Search EdWorkingPapers

Search EdWorkingPapers by author, title, or keywords.

Kathleen Lynch

Kathleen Lynch, Monica Lee, Susanna Loeb.

The COVID-19 pandemic’s impact on preschool children’s school readiness skills remains understudied. This research investigates Head Start preschool children’s early numeracy, literacy, and executive function outcomes during a pandemic-affected school year. Study children (N = 336 assessed at fall baseline; N = 237-250 assessed in spring depending on outcome; fall baseline sample: mean age = 51 months; 46% Hispanic; 36% Black Non-Hispanic; 52% female) in a network of Head Start centers in four states (Nevada, New Jersey, Pennsylvania, and Wisconsin) experienced low in-person preschool exposure compared to national pre-pandemic norms. Children experienced fall to spring score gains during the pandemic-affected year of 0.05 SD in executive function, 0.27 SD in print knowledge, and 0.45-0.71 SD in early numeracy skills. Descriptively, for two of the three early numeracy domains measured, spring test score outcomes were stronger among children who attended more in-person preschool. We discuss implications for future research and policy.

More →


Kathleen Lynch, Lily An, Zid Mancenido.
We present results from a meta-analysis of 37 contemporary experimental and quasi-experimental studies of summer programs in mathematics for children in Grades pre-K-12, examining what resources and characteristics predict stronger student achievement. Children who participated in summer programs that included mathematics activities experienced significantly better mathematics achievement outcomes, compared to their control group counterparts. We find an average weighted impact estimate of +0.10 standard deviations on mathematics achievement outcomes. We find similar effects for programs conducted in higher- and lower-poverty settings. We undertook a secondary analysis exploring the effect of summer programs on non-cognitive outcomes and found positive mean impacts. The results indicate that summer programs are a promising tool to strengthen children’s mathematical proficiency outside of school time.

More →


Leiah Groom-Thomas, Monica Lee, Cate Smith Todd, Kathleen Lynch, Susanna Loeb, Scott McConnell, Lydia Carlis.

Many preschool agencies nationwide continue to experience closures and/or conversions to virtual or hybrid instruction due to the ongoing COVID-19 pandemic. Despite the importance of understanding young children’s learning and development during the COVID emergency, limited knowledge exists on adaptable practices of assessing young children during the pandemic. We detail practices used to assess learning in 336 Head Start children across four states during three different time periods in the 2020-21 school year, using adaptation of traditionally in-person assessments of early numeracy, early literacy, and executive functioning. In doing so, we distill early lessons for the field from the application of a novel, virtual assessment method with the early childhood population. The paper describes adaptations of assessment administration for virtual implementation and incorporation of feedback into continued virtual delivery of assessments. Applications and limitations in broader contexts are discussed.

More →


Kathryn E. Gonzalez, Kathleen Lynch, Heather C. Hill.

Despite growing evidence that classroom interventions in science, technology, engineering, and mathematics (STEM) can increase student achievement, there is little evidence regarding how these interventions affect teachers themselves and whether these changes predict student learning. We present results from a meta-analysis of 37 experimental studies of preK-12 STEM professional learning and curricular interventions, seeking to understand how STEM classroom interventions affect teacher knowledge and classroom instruction, and how these impacts relate to intervention impacts on student achievement. Compared with control group teachers, teachers who participated in STEM classroom interventions experienced improvements in content and pedagogical content knowledge and classroom instruction, with a pooled average impact estimate of +0.56 standard deviations. Programs with larger impacts on teacher practice yielded larger effects on student achievement, on average. Findings highlight the positive effects of STEM instructional interventions on teachers, and shed light on potential teacher-level mechanisms via which these programs influence student learning.

More →


Heather C. Hill, Erica Litke, Kathleen Lynch.

Background:
For nearly three decades, policy-makers and researchers in the United States have promoted more intellectually rigorous standards for mathematics teaching and learning. Yet, to date, we have limited descriptive evidence on the extent to which reform-oriented instruction has been enacted at scale.

Purpose:
The purpose of the study is to examine the prevalence of reform-aligned mathematics instructional practices in five U.S. school districts. We also seek to describe the range of instruction students experience by presenting case studies of teachers at high, medium and low levels of reform alignment.

Participants:
We draw on 1,735 video-recorded lessons from 329 elementary teachers in these five U.S. urban districts.

Research Design:
We present descriptive analyses of lesson scores on a mathematics-focused classroom observation instrument. We also draw upon interviews with district personnel, rater-written lesson summaries, and lesson video in order to develop case studies of instructional practice.

Findings:
We find that teachers in our sample do use reform-aligned instructional practices, but that they do so within the confines of traditional lesson formats. We also find that the implementation of these instructional practices varies in quality. Furthermore, the prevalence and strength of these practices corresponds to the coherence of district efforts at instructional reform.

Conclusions:
Our findings suggest that unlike other studies in which reform-oriented instruction rarely occurred (e.g. Kane & Staiger, 2012), reform practices do appear to some degree in study classrooms. In addition, our analyses suggest that implementation of these reform practices corresponds to the strength and coherence of district efforts to change instruction.

More →


Kathleen Lynch, Heather C. Hill, Kathryn E. Gonzalez, Cynthia Pollard.

More than half of U.S. children fail to meet proficiency standards in mathematics and science in fourth grade. Teacher professional development and curriculum improvement are two of the primary levers that school leaders and policymakers use to improve children’s science, technology, engineering and mathematics (STEM) learning, yet until recently, the evidence base for understanding their effectiveness was relatively thin. In recent years, a wealth of rigorous new studies using experimental designs have investigated whether and how STEM instructional improvement programs work. This article highlights contemporary research on how to improve classroom instruction and subsequent student learning in STEM. Instructional improvement programs that feature curriculum integration, teacher collaboration, content knowledge, pedagogical content knowledge, and how students learn all link to stronger student achievement outcomes. We discuss implications for policy and practice.

More →


Heather C. Hill, Kathleen Lynch, Kathryn E. Gonzalez, Cynthia Pollard.

How should teachers spend their STEM-focused professional learning time? To answer this question, we analyzed a recent wave of rigorous new studies of STEM instructional improvement programs. We found that programs work best when focused on building knowledge teachers can use during instruction: knowledge of the curriculum materials they will use, knowledge of content and how content can be represented for learners, and knowledge of how students learn that content. We argue that such learning opportunities improve teachers’ professional knowledge and skill, potentially by supporting teachers in making more informed in-the-moment instructional decisions.

More →


Kathleen Lynch, Heather C. Hill, Kathryn E. Gonzalez, Cynthia Pollard.

We present results from a meta-analysis of 95 experimental and quasi-experimental preK-12 science, technology, engineering, and mathematics (STEM) professional development and curriculum programs, seeking to understand what content, activities and formats relate to stronger student outcomes. Across rigorously conducted studies, we found an average weighted impact estimate of +0.21 standard deviations. Programs saw stronger outcomes when they helped teachers learn to use curriculum materials; focused on improving teachers' content knowledge, pedagogical content knowledge and/or understanding of how students learn; incorporated summer workshops; and included teacher meetings to troubleshoot and discuss classroom implementation. We discuss implications for policy and practice.

More →