We consider the case in which the number of seats in a program is limited, such as a job training program or a supplemental tutoring program, and explore the implications that peer effects have for which individuals should be assigned to the limited seats. In the frequently-studied case in which all applicants are assigned to a group, the average outcome is not changed by shuffling the group assignments if the peer effect is linear in the average composition of peers. However, when there are fewer seats than applicants, the presence of linear-in-means peer effects can dramatically influence the optimal choice of who gets to participate. We illustrate how peer effects impact optimal seat assignment, first under a general social planner utility function and then from both an efficiency and an equity perspective. We next use data from a recent job training RCT to provide the first evidence of large peer effects in the context of job training for disadvantaged adults. Finally, we combine the two results to show that the program’s effectiveness varies greatly depending on whether the assignment choices account for or ignore peer effects.
Optimal Allocation of Seats in the Presence of Peer Effects:
Evidence from a Job Training Program

Matthew D. Baird
RAND Corporation

John Engberg
RAND Corporation

Isaac M. Opper†
RAND Corporation

March 24, 2021

Abstract

We consider the case in which the number of seats in a program is limited, such as a job training program or a supplemental tutoring program, and explore the implications that peer effects have for which individuals should be assigned to the limited seats. In the frequently-studied case in which all applicants are assigned to a group, the average outcome is not changed by shuffling the group assignments if the peer effect is linear in the average composition of peers. However, when there are fewer seats than applicants, the presence of linear-in-means peer effects can dramatically influence the optimal choice of who gets to participate. We illustrate how peer effects impact optimal seat assignment, first under a general social planner utility function and then from both an efficiency and an equity perspective. We next use data from a recent job training RCT to provide the first evidence of large peer effects in the context of job training for disadvantaged adults. Finally, we combine the two results to show that the program’s effectiveness varies greatly depending on whether the assignment choices account for or ignore peer effects.

∗This research was generously supported by the City of New Orleans from funding from a U.S. Department of Labor Workforce Innovation Fund grant under SGA/DFA PY-13-06, and we are indebted to Brandi Ebanks-Copes, Tammie Washington, and the NOLA Workforce Investment Board for their help on the project. Italo A. Gutierrez conducted the initial data analysis and provided thoughtful advice at the early stages and was therefore instrumental to the paper. We also thank Michael Dinerstein, Lisa Abraham, and conference participants 2020 AEFP for their helpful comments on this paper. Finally, we also also grateful to the participants in the study, without whom this type of research would not be possible.

†Baird: mbaird@rand.org; Engberg: engberg@rand.org; Opper: iopper@rand.org
I Introduction

Understanding how individuals are impacted by their peers has long fascinated academics, policy makers, and the wider public. It is therefore unsurprising that despite the difficulty in identifying the effect of an individual’s peers on her own outcomes, a large body of research has aimed to estimate the magnitude of these peer effects in a number of different settings and on a number of different outcomes. For example, Mas and Moretti (2009) uses data from a large supermarket chain to show how the productivity of workers’ peers affects their own productivity; Sacerdote (2001) looks at how Dartmouth undergraduates’ roommates’ and dorm-mates’ high school GPA impacts their own college GPA; and Opper (2019) shows that the impact that teachers have on their students spills over to impact their students’ future peers.

Despite the different contexts, all three of these papers share a common feature: all use a linear-in-means specification, in which the impact of an individual’s peers on her outcome can be summarized by the average of the peers’ relevant characteristic. While the linear-in-means specification is the most commonly used specification, an important implication of the linear-in-means specification is that even in contexts where peer effects are large, the average outcome across individuals is not impacted by how individuals are sorted into groups; moving an individual who is a positive influence on her peers from Group A to Group B will increase the average outcome in Group B by the exact same amount as it will decrease the average outcome in Group A. This has led many researchers to focus on more complex forms of peer effects, which are asserted to have more policy relevance.¹

This conclusion, that the magnitude of linear-in-means peer effects do not impact the average outcome of individuals, no longer holds when only a subset of the individuals in a population get a treatment. For example, suppose that a school has enough resources

¹This sentiment is stated succinctly in Hoxby and Salyer (2006): “The focus on establishing existence and the linear-in-means model in particular have been problematic because neither educational policy-makers nor economists would care much about peer effects if they merely existed and were linear in means. If peer effects were linear in means, then regardless of how peers were arranged, society would have the same average level of outcomes.”
to give five students extra group tutoring after school, that students who have low initial achievement are helped the most by the tutoring, and that there is a linear-in-means peer effect in which the tutoring is more effective for an individual when her peers in the program have high initial achievement. In this set-up, there is now a tension over whom to give the spots to. To see why, suppose that four students are assigned to the group tutoring and a principal who cares only about her students’ average outcomes is in charge of assigning the last student. Giving the last spot to the lowest achieving remaining student helps him more than giving it to a highest achieving remaining student helps her; however, the students already assigned to the group would benefit more if the last slot was given to the highest achieving student than if it was given to the lowest achieving student. To whom, then, should the last spot be given? The magnitude of the peer effects now has potentially large implications for the efficiency of the tutoring program and impacts the optimal allocation of individuals to the program.

In this paper, we start by formalizing the question described in the paragraph above. To do so, we consider a social planner who can assign individuals to treatment and explore how the magnitude of linear-in-means peer effects influences the optimal treatment assignment. Regardless of planner’s utility function, we show that increasing the magnitude of the peer effects will increase the average ability of individuals assigned to treatment in the optimal allocation.2 We then focus on two specific social planner utility functions, one in which she only cares about the average outcome of the population and one in which she only cares about the minimum outcome in the population. We characterize the optimal treatment assignment under these utility functions and discuss in more detail how the presence of peer effects influences this allocation.

We then turn our attention to the empirical analysis. For all the research into peer effects in education, the literature largely neglects an important part of the American education system: the adult learning/job training sector. This is despite the fact that the sector is a large component of the United States education system; in 2016, for example, over one-

2 Here we use “ability” to refer to the characteristics that generates the peer effects.
quarter of adults in the United States held a non-degree credential (Cronen et al. (2017)). Furthermore, job training programs are arguably one of the more important settings for peer effects, as these programs often are tasked with not only teaching specific job skills but also with shaping the participants’ relationship to work and the labor market. Finally, training programs are an ideal context to study for our purposes, as they differ from many other educational settings in that they are not universal and instead are often a scarce resource, with limited slots given only to a fraction of the individuals who are interested.

In our empirical analysis, we use a randomized control trial (RCT) in which applicants were randomly assigned slots in a job training program in Louisiana funded by the United States Department of Labor Workforce Innovation Fund (WIF), authorized by the Workforce Innovation and Opportunity Act, and its predecessor, the Workforce Investment Act (WIA). We match participants in the study to administrative data on individuals’ earnings and employment both before and after the training program. We then use this random assignment to show compelling evidence that the average labor market history of other individuals in the class has a statistically significant and economically meaningful impact on the future job prospects of individuals who attend the training. For example, we find that an individual trained in a cohort with average labor market history one standard deviation above the average is 15 percentage points more likely to be employed in the six quarters post-training than an identical individual trained in a cohort with average labor market history one standard deviation below the average. Similarly, we find that the program’s impact on the individual trained in a cohort with peers who have higher than average labor market history is approximately $900 more per quarter than the program’s impact on the individual trained in a cohort with peers who have lower than average labor market history. As a comparison, $900 is around 25% of the average baseline earnings of participants and roughly equal to the average treatment effect across all cohorts.

In our last section, we conclude by combining the theoretical results with the empirical estimates to determine the optimal allocation of individuals to the program. We show that the average impact of the program would be more than double if the slots were allocated
optimally rather than randomly. Even more stark is the comparison between a social planner who optimally assigned individuals to treatment compared to one who attempted to assign individuals to the program optimally, but mistakenly ignored the peer effects when doing so. The impact of the program under the social planner who accounted for the peer effects would be tenfold the impact under the social planner who did not account for them.

I.A Related Literature

The idea that peer effects can impact the optimal allocation of individuals to a limited number of treatment slots is not a new one; however, the papers that do explore this generally assume that the network itself is exogenous to treatment. In these models, treating the well-connected individuals in the network will cause more spillovers than treating the poorly connected individuals (e.g. Cai et al. (2015); Banerjee et al. (2013)). In contrast, we consider the optimal treatment allocation in the opposite extreme, where the treatment assignment completely determines an individual’s peers and the effect of the treatment itself depends on who is in the treatment group. While seemingly similar to the network literature, our paper therefore focuses on a separate mechanism and so is only superficially related to it.

As a consequence, in many ways our paper is more related to the literature on how non-linear peer effects impacts the optimal grouping of individuals in a more reduced-form model, e.g. Bhattacharya (2009); Hoxby and Salyer (2006); Duflo et al. (2011); Carrell et al. (2013). By considering a model in which not all individuals are assigned a group, we show that even linear-in-mean peer effects can have important efficiency implications in addition

3 There are papers that allow for the possibility that the treatment impacts the network, however, they are more concerned with estimation than with determining the optimal targeting of treatment (e.g. Goldsmith-Pinkham and Imbens (2013); Johnsson and Moon (Forthcoming); Comola and Prina (Forthcoming)).

4 Defining “connected” is quite subtle and determining the precise optimum in the canonical diffusion models is an NP-hard problem (Kempe et al. (2003)). The economic literature generally focuses on centrality measures in the network and studies, among other things, the game theoretic motivation behind the centrality measures (Galeotti et al. (2020); Demange (2017); Bloch et al. (2020)) and how the the centrality measures themselves can be approximated without full knowledge of the network structure (Banerjee et al. (2019); Breza et al. (2020)). Other common research questions include the importance of treating the central individuals in the network (Akbarpour et al. (2020); Belhaj et al. (2020)) and how measurement error and empirical uncertainty impact the efficacy of and approach to optimal targeting (Viviano (2020)).
to equity implications and often impacts which individuals should be assigned to the group.

Our empirical results also speak to the literature on the effectiveness of job training programs. Most recent studies of adult job training programs in the United States have found them to be relatively effective, but with qualifications. Van Horn et al. (2015) provide a useful review of this literature. Fortson et al. (2017) evaluate an RCT design similar to our context, across 28 DOL-funded training programs. They estimate statistically significant increases of more than $600 a quarter in earnings, which is similar to the average treatment effect we estimate. Heinrich et al. (2013) evaluate WIA training programs using quasi-experimental design methods across 12 states, and find positive and statistically significant treatment effects on employment and earnings, with $591 higher quarterly earnings for women and $419 for men, and a six percentage point increase in employment. These results are for the general adult training programs. They find no returns in the WIA Dislocated Worker programs, open to those that had been laid off. Andersson et al. (2013) investigate a different set of WIA programs, but find similar effects: for the general adult training program, earnings effects were between $300-$600 increase in quarterly earnings, and $1,300-$1,700 in the third year after training, along with a 2 percentage point increase in probability of employment. Similar to Heinrich et al. (2013), they find a worse outcome for dislocated workers trained, with significant earnings losses in the first three years (although with gains in the third year).

Non-WIA job training programs have also been found to be effective. The Center for Employment and Training in San Jose, California, provided three to six months of vocational training to disadvantaged youths and adults and saw gains in sustained earnings of about 40 percent per year (Heckman (2000)). Hollenbeck et al. (2012) find a postsecondary CTE training program yielded around a $1,500 increase in quarterly earnings.

While there has been a large amount of research both on the question of peer effects in traditional colleges and universities and on the question of how effective job training programs are, the question of whether there are peer effects in the job training programs in
the United States has not been explored.\footnote{There are a handful of papers that estimate peer effects in “vocational” settings in countries other than the United States; however, in these countries vocational education is structured quite differently and more akin to high school or traditional college in the United States. These papers are also aimed at answering questions about different types of peer effects than the one we study. For example, Frattini and Meschi (2019) uses vocational training institutions in Italy to investigate the effect of having immigrants in native Italians’ achievement and Ramirez-Espinoza (2019) looks at gender peer effects.} We combine the two literatures and show both that there are large peer effects in the vocational education setting and that these peer effects mean that the programs’ effectiveness depends crucially on the peer composition of the program.

II Conceptual Framework

II.A Model Specification

We now formally define our model. In it, there is a finite set of N agents, each endowed with an observable attribute that we denote θ_i. Each individual can be assigned to either a treatment condition or control condition. Their assignment is captured by a variable T_i, which equals one if individual i is assigned to the treatment condition and equals zero if individual i is assigned to the control condition. We focus here for simplicity on the case where there is a single treatment group; however, the conclusions do not change if those who are treated are then assigned to smaller groups.

This treatment assignment is important as it affects each individual’s outcome, which we denote as y_i for individual i. We define $y_i(0)$ as individual i’s outcome when she is assigned to the control condition. If individual i is instead assigned to the treatment condition her outcome is $y_i(0) + \tau_i$. Given our notation, we can parsimoniously define individual i’s outcome as:

$$y_i = y_i(0) + \tau_i \cdot T_i \quad (1)$$

We will assume that the individual treatment effect τ_i depends on both i’s own attributes and on the attributes of the other individuals who are assigned to the treatment condition.
(i.e. peer effects). More formally, we will assume that:

\[\tau_i = \tau(\theta_i) + \gamma \cdot \frac{1}{T} \sum_{j \neq i} \theta_j T_j \]

(2)

where \(\tau(\theta_i) \) is independent of who else is assigned to the treatment.\(^6\) Note that the main assumption here is that while we allow for there to be peer effects, we restrict them to be linear-in-means peer effect. In the above specification, we also assume that the individual component of treatment effect heterogeneity is a function of \(\theta_i \); however, this is not a critical assumption and the main conclusions hold even when allowing for additional dimensions of treatment effect heterogeneity.

For the theoretical results, we do not make any further assumptions about the relationship between \(\theta_i \) and \(y_i(0) \) or about the shape of the \(\tau(\theta_i) \) function. In many peer effects models, it is assumed that an individual’s effect on their classmates is proportional to their “ability,” for example, to their untreated outcome \(y_i(0) \). It might also be tempting to assume that a person’s contribution to their classmates’ learning is related to their own ability to learn in isolation, that is, to their own \(\tau(\theta_i) \). For the theoretical analysis, we leave open both possibilities and define the contribution to classmates’ learning as a distinct attribute \(\theta_i \), which may or may not be related to \(y_i(0) \).

Given this model, we consider the perspective of a social planner who must assign exactly \(T < N \) individuals to the treatment. For example, this could be a principal who decides which \(T \) students attend an after-school tutoring program, a public agency selecting which applicants will receive job training (as in our application), or more generally any case where there is oversubscription to a treatment in which treated individuals affect each others’ outcomes. Formally, denoting the vector of treatment assignments as \(T \) and writing the

\(^6\)The fact that the peer effect term includes an individual’s own characteristic is innocuous, as we could re-write this as \(\tau_i = \tau(\theta_i) + \gamma \cdot \frac{1}{T} \sum_{j \neq i} \theta_j T_j \) for a slightly different value of \(\tau(\theta_i) \) and \(\gamma \). We opt for this specification in the theory section as it simplifies the algebra.
social planner’s utility function as: \(U(y_1, y_2, ..., y_N) \), we get that her optimal decision is:

\[
T^{\text{opt}} = \arg\max_T U\left(y_1, y_2, ..., y_N\right) \tag{3}
\]

\[
= \arg\max_T U\left(y_1(0) + \tau_1 T_1, y_2(0) + \tau_2 T_2, ..., y_N(0) + \tau_N T_N\right) \tag{4}
\]

We first consider the impact of peer effects on treatment assignment under a general utility function and then consider in more detail how her decision depends on the presence of peer effects under two extreme circumstances, one in which she cares only about the efficiency of \(T \) and the other in which she only cares about equity.

II.B General Result

We start with a general utility function, in which our only assumption is that \(U(y_1, y_2, ..., y_N) \) is weakly increasing in each of the \(y_i \)'s. We then ask how the optimal treatment allocation changes as peer effects become more important. To do so, we need to formally define what is meant by the peer effects becoming “more important.” One natural approach is to consider what happens when \(\gamma \) in Equation (2) increases. However, increasing \(\gamma \) affects the optimal treatment allocation in two ways: it both increases the importance of peer effects and directly impacts \(y_i \) for those who are treated; this is similar to the idea that changing prices affects the buyers’ decision via both an income effect and a substitution effect. To isolate the increasing importance of peer effects, we consider a compensated change in \(\gamma \), in which as \(\gamma \) increases a constant is added to \(\tau(\theta_i) \) such that \(y_i \) is constant for everyone if there is no change in assignment.

To formally define a compensated change, we add a bit more notation by using \(T^{\text{opt}}_i(\gamma) \) to indicate whether individual \(i \) is treated under the optimal allocation when the peer effect parameter is \(\gamma \) and \(T^{\text{opt}}(\gamma) \) to indicate the optimal vector of treatment assignments under \(\gamma \).\(^\text{7}\) We then make the following definition:

\(^\text{7}\)Throughout we will assume that there is a unique choice of treatment assignment that is optimal. Doing so allows us to write the comparison more easily, without requiring us to define set ordering. We highlight in the proof where we use this assumption and how the proof could be adjusted without this assumption.
Definition. In a compensated change of size Δ from a baseline γ of $\tilde{\gamma}$, individual i’s treatment effect changes from:

$$
\tau_i = \tau(\theta_i) + \tilde{\gamma} \cdot \frac{1}{T} \sum_{\forall j} \theta_j T_j
$$

to

$$
\tau_i = \tau(\theta_i) + (\tilde{\gamma} + \Delta) \cdot \frac{1}{T} \sum_{\forall j} \theta_j T_j - C
$$

where C is a constant equal to $\Delta \cdot \frac{1}{T} \sum_{\forall j} \theta_j T_j^{opt}(\tilde{\gamma})$.

Thus there are two changes to τ_i: first, $\tilde{\gamma}$ increases to $\tilde{\gamma} + \Delta$; second, a constant equal to $\Delta \cdot \frac{1}{T} \sum_{\forall j} \theta_j T_j^{opt}(\tilde{\gamma})$ is subtracted from $\tau(\theta_i)$, ensuring that τ_i does not change for any individual if the treatment assignment remains at $T^{opt}(\tilde{\gamma})$.

In a compensated change of size Δ, the outcomes stay constant for each individual absent a change in treatment assignment; however, the increased importance of peer effects impacts the social planner’s trade-offs when considering alternative treatment assignments and so the optimal treatment assignment can change. In the following theorem, which we prove in Appendix A, we formalize the idea that if the treatment assignment does change, it changes in a way that raises the average value of θ_i among individuals assigned to the treatment.

Theorem 1. For a compensated change from any γ to $\gamma + \Delta$ with $\Delta > 0$, the average θ_i of the treated individuals after the change is no lower than before the change, i.e.:

$$
\frac{1}{T} \sum_{\forall j} \theta_j T_j^{opt}(\gamma + \Delta) \geq \frac{1}{T} \sum_{\forall j} \theta_j T_j^{opt}(\gamma)
$$

(5)

In other words, if we assume that θ_i to be a measure of underlying ability, then the proof states that the average ability of the optimally chosen set of treated individuals will increase in situations where peer effects have a greater impact on treatment effects. While quite intuitive and straightforward to prove, it is worth emphasizing the generality of the
II.C Efficiency Considerations

We next consider a case when the social planner cares only about efficiency. More formally, this means that:

\[U(y_1, y_2, ..., y_N) = \sum_{\forall i} y_i \]

i.e., she is only concerned with the aggregate amount of \(y_i \) that the individuals produce.

Noting that the \(y_i(0) \) terms are unaffected by the allocation and using Equation (2), we can write the efficiency of a particular allocation as:

\[
\text{Efficiency}(T) = \sum_{\forall i} \tau_i \cdot T_i \\
= \sum_{\forall i} \left(\tau(\theta_i) + \gamma \cdot \frac{1}{T} \sum_{\forall j} \theta_j T_j \right) T_i
\]

Finally, noting that the peer effect term \(\gamma \cdot \frac{1}{T} \sum_{\forall j} \theta_j T_j \) is identical for all individuals, we can make one final re-write to show that the efficiency of a particular allocation is:

\[
\text{Efficiency}(T) = \sum_{\forall i} \left(\tau(\theta_i) + \gamma \cdot \theta_i \right) T_i
\]

This simple expression in Equation (9) implies the most efficient allocation is therefore to give the treatment to the \(T \) individuals with the highest values of \(\tau(\theta_i) + \gamma \cdot \theta_i \) irrespective of their outcome in absence of treatment \((y_i(0)) \). An important nuance is that although the allocation decision only depends on \(\tau(\theta_i) + \gamma \cdot \theta_i \), the two terms impact different individuals; the size of \(\tau(\theta_i) \) affects the degree to which the treatment impacts individual \(i \) directly, while
II.D Equity Considerations

Baird, Engberg, and Opper

the size of $\gamma \cdot \theta_i$ impacts how effective the treatment is on the other treated individuals. Among other things, this means that designing revelation techniques to determine the optimal assignment of individuals to treatment is complex. For example, using an auction to allocate slots will no longer necessarily provide the most efficient allocation. This is beyond the scope of this paper, however, and we will assume the social planner has complete knowledge of $\tau(\theta_i)$ and $\gamma \cdot \theta_i$.

In Appendix A, we explore the optimal allocation decision further by showing how the treatment slots should be allotted under a few simple restrictions on the individual-level treatment effect heterogeneity, i.e. the $\tau(\theta_i)$ function. For example, we discuss there the optimal allocation if $\tau(\theta_i)$ is linear in θ_i or convex in θ_i. Here, we simply use the efficiency expression to emphasize the following remark:

Remark 1. A social planner who cares only about efficiency will allocate the limited number of spots to the T individuals with the largest values of $\tau(\theta_i) + \gamma \cdot \theta_i$. The impact of the allocation on efficiency thus depends both on variation in how individuals themselves respond to the treatment and on the linear-in-means peer effects.

For example, imagine that the social planner is deciding whether to assign individual j or individual k to the treatment. From Equation (9), it is clear that the efficiency difference between assigning j to the treatment rather than individual k is: $\left(\tau(\theta_j) - \tau(\theta_k)\right) + \left(\gamma \cdot (\theta_j - \theta_k)\right)$. Thus, the difference in how the individuals impact the overall level of peer effects, i.e. $\gamma \cdot (\theta_j - \theta_k)$, affects the efficiency of the allocation by the same amount as the difference in how they respond to the treatment themselves, i.e. $\tau(\theta_j) - \tau(\theta_k)$. Note that this means that although there is often considerable attention given to the possibility that individual-level heterogeneity can generate differences in program effectiveness, even linear-in-means peer effects can generate substantial differences as well.

II.D Equity Considerations

Finally, we consider a case where the social planner is interested in more than efficiency. As our framework here, we will consider the extreme example where the social planner is
II.D Equity Considerations

Baird, Engberg, and Opper

a Rawlsian, in that she only cares about the worst-off individual. Formally, her utility function is:

\[U(y_1, y_2, ..., y_N) = \min\{y_1, y_2, ..., y_N\} \]

(10)

We can then plug in Equation (2) into the expression to get that her utility function is:

\[U(y_1, y_2, ..., y_N) = \min\{y_1(0) + (\tau(\theta_1) + \gamma \cdot \frac{1}{T} \sum \theta_j T_j) T_1, ..., y_N(0) + (\tau(\theta_N) + \gamma \cdot \frac{1}{T} \sum \theta_j T_j) T_N\} \]

(11)

From this, it becaus clear that the substitutability of \(\tau(\theta_i) \) and \(\gamma \cdot \theta_i \) breaks down given that equity concerns are involved. In addition, the treatment assignment decision depends not only on how individuals respond to the treatment, but on how well they would do without the treatment, i.e. on \(y_i(0) \). While it is impossible to precisely determine who would get the treatment, we can make the following remark:

Remark 2. If there are no peer effects, a Rawlsian social planner would give the treatment to the \(T \) individuals with the lowest values of \(y_i(0) \), assuming that the value of the treatment to them is positive.\(^8\) With peer effects, however, this is no longer necessarily the case and a Rawlsian social planner may assign some of the treatment slots to high \(y_i(0) \) individuals if they also have high \(\theta_i \).

As a concrete example, imagine that the social planner is a school principal who is deciding which students to assign to an after-school learning program and, for this decision, only cares about how well her worst student does. If there are no peer effects, she would clearly assign the lowest achieving students to the tutoring program. With peer effects, however, she might instead allocate a few of these scarce seats to the highest achieving students, as a way to make the program more impactful for the lowest achieving students enrolled. This idea that the treatment goes to two types of individuals: those with the

\(^8\)Technically, if \(y_1(0) + \tau_1 < y_2(0) \), where the individual’s are ordered by the value of \(y_i(0) \), a Rawlsian would be indifferent who she assigns the treatment to beyond individual 1. On the other hand, a social planner with lexicographic preferences who cares first about the individual with the lowest \(y_i \), then about the individual with the second lowest \(y_i \), etc. would give treatment to the \(T \) individuals with the lowest values of \(y_i(0) \).
lowest values of $y_i(0)$ and those with the highest θ_i is formalized in the following theorem, which is proved in Appendix A.

Theorem 2. Suppose that a social planner chooses T to maximize Equation (11). Then the optimal allocation of treatment slots involves assigning the treatment to the K individuals with the lowest values of $y_i(0)$ and the $T - K$ individuals with the highest values of θ_i.

III Context and Data

III.A Workforce Innovation Fund Randomized Controlled Trial

We test these models on a set of adult learning job training programs for disadvantaged workers. Specifically, we investigate peer effects and their implication for optimal allotment of training using the Career Pathways training program run by the New Orleans Office of Workforce Development (OWD), and funded by a US Department of Labor (DOL) Workforce Innovation Fund (WIF) grant starting in 2014. This setting provides an instructive application of the theory for two reasons: first, the intervention was implemented as a randomized controlled trial (RCT), which allows for clean identification both of the treatment effect and the peer effect; second, the setting is one in which peer effects were reasonably likely to happen, with small group sizes (in our sample, average cohort size was below 12 people). In addition, there is a paucity of research on peer effects in the adult learning settings, and so beyond being an application of the theory the peer effect estimates are themselves interesting and informative.

The training targeted lower-income workers in New Orleans interested in job training in one of three pathways: advanced manufacturing, health care, and information technology. For each pathway, there was around 20 hours of training time per week for two to four months. The program was constituted of four distinct stages: recruitment, screening, randomization, and training. We describe the four stages of the program here.

Stage 1: Recruitment OWD recruited potential trainees using several methods: (1) local One-Stop Centers provided program information to individuals using government as-
istance programs (i.e., SNAP, UI, etc.) who are required to partake in career readiness and reporting activities under the federal funding mandate; (2) fixed tablet stations were placed in targeted local hotspots throughout the city (i.e., community centers, public assistance offices, etc.) to provide program information and collect information on interested applicants; (3) a communications firm hired by OWD provided general program outreach as well as target particular populations via paid advertising and online marketing campaigns, via Facebook, Craigslist, Twitter, and radio ads; and (4) OWD used their existing community partnerships to distribute information about the training program by co-hosting a series of workshops, open to both referrals and members of the general public.

Stage 2: Screening One objective of the Career Pathways program was to access a population of disadvantaged jobseekers (unemployed, underemployed, discouraged, and other interested workers) who had potential to succeed in both the training and subsequent work situations. OWD sought to screen the applicant pool to select individuals who were well-informed about the available career pathways, the rigor of the training program and the employment possibilities post-completion.

In order to do so, OWD screened interested candidates before placing them into the randomization pool. The screening process typically included four components: (1) attendance at a mandatory orientation, (2) drug testing, (3) completion of a relevant assignment or test to determine basic literacy and numeracy (such as the Test of Adult Basic Education, or TABE) and (4) completion of a structured and scored 45-minute interview with OWD about their capacity. Those deemed likely to succeed were placed into the randomization pool, while those deemed unlikely to succeed were directed to other government programs and benefits. While selection of trainees is always a consideration of any training program, this rigorous level of determination and selection is uncommon. In Fortson et al. (2017) review of 28 WIF programs, they found that sites used assessment tools, including the TABE, but did so for information on how to support the trainee and not as a strict selection mechanism.

Stage 3: Randomization Individuals who pass the screening and consented to participate in the study were then placed into the randomization pool for each cohort. Within
that group, half of the persons were randomly selected to be invited to the training program, and half were not. Randomization was done using random numbers within strata defined by gender, baseline income, current employment status, and age.

Stage 4: Training The training program represented a coordinated effort between the OWD and the training providers, which included a local community college, established professional training providers, and firms. Training was typically offered through twenty hours across five days per week. The first round of training was around two months long. At the completion of the first round of training, candidates in most were cohorts invited to enter an additional subsequent “stackable” credit program, which would comprise an additional two months of training within their career pathway. Training would involve the opportunity to obtain various industry-based credentials along the way, conditional on attendance and success on a set of tasks or tests.

III.B Data

We define a cohort as a group of individuals entering the same randomization pool to enter a specific training program together at the same time. There were 25 total cohorts in the Career Pathways program. The first cohort was not randomized, and significant programmatic changes to the stages were made after the third cohort. Thus, following Baird et al. (2019), we do not include in our analysis these three cohorts. There are an additional two cohorts at the end of the program for which no data was available, and so we do not include them in our analysis either. Our final sample thus uses 20 cohorts for this paper.

Our data for this paper comes from two sources. First, in order to enter a randomization pool, individuals had to fill out a brief survey (the baseline survey) with questions about their demographics and current employment and earnings. They also provided their social security numbers and consented to researchers obtaining data from the state of Louisiana. This enabled the second data source: the history of employment, earnings, and industry records were obtained from the Louisiana Workforce Commission (LWC) for each individual
for each job they held that was reported to the state. This data is at the quarterly level, between and including the first quarter of 2014 and the first quarter of 2019, for 21 total consecutive quarters of data for each individual. Most of these quarters were before the start of training.

Table 1 presents information regarding the training program enrollments. After restricting to the 20 cohorts as described above, there were nearly 500 individuals in the study, with over 2,000 post-training quarterly observations. Advanced manufacturing had the largest number of participants, driven by having larger cohorts on average. Health care was the smallest pathway, both in terms of number of cohorts and participants.

Table 2 presents the baseline characteristics of the sample we use for this analysis, as well as the outcomes from the LWC data for a period of two years prior to training. The sample is relatively low-income, with average earnings of a little more than $3,500 per quarter (or around $14,000 per year). 53% of the sample had a job at time of randomization. Approximately 90% of the sample are Black individuals and half of the sample are over age 35. We find that there is no statistical difference between the treatment and control group on any of these dimensions and the differences are quite small relative to the pooled standard deviations. Thus, there is good balance between the two groups.

III.C Labor Market History

We now construct a measure that captures individuals’ labor market history, which serves as our measure of θ_i as defined in the above conceptual framework for our empirical analysis. We start by standardizing four measures, so all are mean zero and have a standard deviation of one. These measures are: a) the number of quarters employed in the two years before randomization; b) the total earnings in the two years before randomization; c) total earnings in the year before the screening occurs; d) an indicator for whether individuals are working at the time of screening. The choice of these measures reflects our assumption that the individuals who will be most helpful classmates are those who have had positive labor market experiences, and therefore can share experiences of job search and job success. It
is also plausibly related to underlying ability, which means individuals with positive labor market experiences may also be better able to help other classmates learn difficult material.

We then average these standardized measures to calculate a measure of each individual's labor market history. To construct our measure of an individual's peers' average labor market history, we calculate a leave-one-out average for each individual in which we calculate the average labor market history for all individuals who apply, are accepted, and are assigned to the same arm (i.e., treatment or control) in the same cohort as individual i. Importantly, this highlights the fact that the average value of θ_i of an individuals' peers is largely random, as it depends on whether the individuals who were well-connected to the labor market are the ones that were randomly assigned to the treatment or to the control group within a cohort.

Figure 1 shows the distribution of both individual labor market history and the peer average labor market history. As can be seen, individual values of θ_i range from around -2.75 to about 1.75, and has a standard deviation of around 1.38. As would be expected, variation in the peer average labor market history is smaller than variation in individual labor market history. However, Figure 1 shows that there is still a reasonable variation in the peer average labor market history, with values ranging from approximately -1.5 to 1, and has a standard deviation of 0.32. Thus, as measured by the standard deviation, there is approximate 25% as much variation in peer average labor market history as there is in individual labor market history.

IV Empirical Strategy

We now discuss the empirical specification that we use to estimate the average treatment effect, the degree of individual-level treatment heterogeneity, and the size of the peer effect. Given the relatively small sample size, we first residualize the outcome using a random forest regression as a way to reduce the variance of the error term. More specifically, we
use as our main outcome:

\[r_{i,k,t} = y_{i,k,t} - \hat{g}(Z_i) \]

(12)

where \(y_{i,k,t} \) is the outcome of interest, \(Z_i \) are covariates described below, and

\[\hat{g}(Z_i) = \frac{1}{2} \hat{E}[y_{i,k,t} | Z_i, T_i = 1] + \frac{1}{2} \hat{E}[y_{i,k,t} | Z_i, T_i = 0] \]

(13)

As the covariates \(Z_i \), we use: information on individual \(i \)'s gender, race, and age at randomization; employment status and total wages received in each of the twelve quarters prior to randomization; information used to determine eligibility at screening (discussed in Section III); and time period post-training. Since all of the covariates are not impacted by the treatment, residualizing the outcome by any function \(g(Z_i) \) would not change the estimated coefficients. See Appendix B for a short proof of this statement and more discussion about the motivation both behind this residualization approach as well as the form of \(g(Z_i) \) we use. Finally, we estimate \(\hat{E}[y_{i,k,t} | Z_i, T_i = 1] \) and \(\hat{E}[y_{i,k,t} | Z_i, T_i = 0] \) using all the cohorts except for \(k \), which ensures that the estimation of \(\hat{g}(Z_i) \) is independent of individual \(i \)'s treatment status (Opper (2020)).

To estimate the size of the peer effect and degree of individual treatment heterogeneity, we then run the following regression:

\[r_{i,k,t} = \alpha \theta_i + \left[\tau + \beta \theta_i + \gamma \bar{\theta}_{i,k} \right] T_i + \delta_k + \nu_i + \eta_t + \epsilon_{i,k,t} \]

(14)

where:

- \(r_{i,k,t} \) is the residualized outcome for individual \(i \) who applied to cohort \(k \) in period \(t \);
- \(\theta_i \) is individual \(i \)'s labor market history, described in the section above;
- \(\bar{\theta}_{i,k} \) is the average labor market history for individuals in the same cohort \(k \) and treatment status as individual \(i \);\(^9\)

\(^9\)Formally, we define \(\bar{\theta}_{i,k} \) as \(\frac{T_k}{\sum_{j \neq i} T_j} \sum_{j \neq i} \theta_j T_j A_i^k + \frac{1 - T_k}{\sum_{j \neq i} T_j} \sum_{j \neq i} \theta_j (1 - T_j) A_i^k \), where \(T_k \) is the number of
• T_i is an indicator for whether individual i was randomly assigned treatment;

• δ_k is a fixed effect indicating which cohort individual i applied for;

• ν_i is a vector of strata fixed effects, indicating which strata individual i is in; the strata are defined by gender, income, employment status, and age all measured at the time of randomization;

• η_t are period fixed effects;

• $\epsilon_{i,k,t}$ is an individual error term.

In the main specification, the empirical model restricts the theoretical model developed above by assuming that $\tau(\theta_i)$ is linear in θ_i, i.e. $\tau(\theta_i) = \tau + \beta \cdot \theta_i$. Thus, τ is the average treatment effect, $\hat{\beta}$ is the estimate of the amount of individual-level treatment heterogeneity and $\hat{\gamma}$ is the estimate of the size of the peer effects.\(^{10}\)

When estimating we allow for correlation of the $\epsilon_{i,k,t}$ error terms both within-individuals and within-treatment groups by clustering at the individual-level for individuals not randomly assigned to the treatment and at the cohort-by-treatment-level for those randomly assigned to the treatment.\(^{11}\)

Finally, it worth discussing how the random assignment of individuals to treatment within-cohorts allows us to credibly estimate the magnitude of the peer effects, despite the many difficulties that peer effect estimation entails (e.g., Manski (1993); Angrist (2014); Feld and Zöllitz (2017)). Informally, estimating the true causal effect on an individual's peers on her outcome requires variation in the ability of the individuals’ peers that is uncorrelated with her own ability.\(^{12}\) Normally, this is quite challenging as similar individuals endogenously group together, making it difficult to tease apart the impact of an individual’s
own ability on her outcome as opposed to the impact of the individual’s peers’ average ability. In our case, however, the assignment of individuals to treatment is what generates most of the variation in an individual’s peers’ labor market history; since this assignment is random, it clearly cannot be correlated with an individual’s own labor market history or any other characteristics of the individual. Furthermore, the presence of control groups allows us to control for the one potential source of selection, of individuals into cohorts; we do so here by including cohort fixed effects in the specification. Thus, both the random assignment of individuals to treatment and the presence of a control group allow us to credibly estimate the causal impact of an individual’s peers on her outcomes without the strong assumptions often necessary.

V Peer Effect Estimates

We now present evidence that the effectiveness of the job training programs on an individual depended in part on the labor market history of the individuals they took the training with. The estimated peer effects are shown in Table 3, which also shows the average impact of the training and the how the impact of the training depends on the individuals’ own labor market history. The four columns pool all quarters post-training and include fixed effects for the training cohort, for the strata used during randomization, and the time period. The four columns differ only in the outcome they show: the first two shows the impact on total wages (in logs and levels respectively), the third on whether an individual was employed or not, and the fourth on conditional wages, i.e. it restricts the sample to those employed after the training period and shows the impact on their total wages.

As seen in the third row of the first three columns of Table 3, the average treatment

\[\text{As seen in the third row of the first three columns of Table 3, the average treatment}\]

\[\text{effect, make it quite unlikely that our results are due to measurement error in our peer metric, a potential concern with peer effect estimates discussed in Feld and Zöllitz (2017). We also confirm that measurement error reduces the estimated peer effects with a simulation discussed in Appendix D.}\]
effect of the program on both wages and employment was positive. Since the fourth column conditions on an endogenous variable, the coefficient should be interpreted with caution. The fact that average treatment effect is positive here too, however, does provide some suggestive evidence that not all of the wage effect shown in columns (1) and (2) are due to the employment effect shown in column (3).14 While the third row suggests that the average effect is positive, the second row of Table 3 shows that the program has a larger effect on individuals who themselves have a poor labor market history; that is, those who were less connected to the labor market before the randomization saw a larger benefit of attending the program than individuals with a better labor market history. Finally, the top row shows that the effectiveness of the program on a particular individual is larger when the other individuals attending the job training program have a good labor market history, i.e. there are peer effects in the program. This result is statistically significant at the 1\% level if the outcome of interest is total wages earned (when measured in logs) or employment probability and statistically significant at the 10\% level if the outcome of interest is total wages earned (when measured in levels).

To interpret the size of the coefficients, consider an individual who an average labor market history herself and who attends a training session where the peer average labor market history is one standard deviation below the mean. Given that the standard deviation of peer average labor market history is 0.32, the coefficients from Table 3 suggest that she benefits from attending the program. By attending the program she sees an increase in her total wages of approximately $490 per quarter, or $935 - $1390*0.32. Contrast this with another individual who also had an average labor market history herself, but who attended a training session where the peer average labor market history is one standard deviation above the mean. The benefit from attending the training session for this individual is around $1,380 more per quarter, or $935 + $1390*0.32. Thus, while both individuals benefit from the attending the training program, the benefit for the individual who attended the training

14For much more information about the average effect of the program, see the RAND Report written by two of the authors of this paper (and others): Baird et al. (2019)
session with peers who had above average labor market history is about $900 more than the individual who attended the training session with peers who had below average labor market history.

It is worth dwelling on this magnitude and putting it in context. Perhaps the most natural comparison is to compare the differential effect the program had on these two hypothetical individuals and to the average effect of the program. Since we find that the average effect of the program is $935, the impact of a one-standard deviation change in the group average labor market history on the program’s effect is around half of the average treatment effect. Put differently, imagine a two-step randomization procedure in which the first coin flip determined whether an individual was treated or not and the second, if she was assigned to treatment, determined whether she was assigned to a group with average labor market history one standard deviation above the average or one standard deviation below; our results suggest that both coin flips have approximately the same impact on her eventual earnings and employment probability.

Finally, we note that while hypothetical, these calculations do not involve extrapolating outside of the sample variation. In other words, the calculations do not consider a hypothetical group where each individual has a labor market history one-standard deviation above the mean, with the standard deviation measured using the distribution of individuals’ labor market history. Instead, we consider a group where the group average labor market history is one-standard deviation above the mean, with the standard deviation measured using the observe group average labor market history.

The above analysis pools all quarters post-training session. We next explore how the importance of peers evolves over time. To do so, we separately estimate Equation (14), first restricting the sample to the quarter in which the training takes place and then restricting the sample to each of the six quarters after the training ended. These results are shown in Figure 2, with Panel 2(a) showing the results for total wages and Panel 2(b) showing the results for employment status. The results are similar for both outcomes: for the period in which the training takes place, the labor market history of the peer individuals taking the
training with an individual do not affect her total earnings or employment status. This result serves as a placebo test of sorts, adding further credence to the identification approach. In the quarters after the training program ends, however, the effect of the program becomes increasingly dependent on the individuals’ peers within the program. This suggests that the results in Table 3 understate the importance of an individuals' peers on the long-run effectiveness of the training program.

In short, we find evidence of peer effects in this program and that these peer effects are large relatively to the average treatment effect. We next consider how these results affect the optimal assignment of individuals to the program; however, it is worth emphasizing again that these results are important in-and-of themselves as this result fills a gap in the literature by illustrating the existence of large peer effects in an adult learning context.

VI Optimal Treatment Allocation

In Section V, we considered as fixed the random assignment of individuals to treatment. We now use the empirical results to once again consider the decision of the social planner, as discussed in Section II.

VI.A Efficiency Calculations

To start, we will focus on a social planner who cares only about efficiency and wants to maximize total wages earned by the study participants. As we showed above, we can write the efficiency of a particular allocation as:

\[
\text{Efficiency}(T) = \sum_{\forall i} \left(\tau(\theta_i) + \gamma \cdot \theta_i \right) \cdot T_i
\]

which also can be thought of as the aggregate benefit of the program on the specific outcome examined.

We can now go further than in Section II and explicitly calculate the aggregate benefit of the training program for any given \(T \), i.e. for any assignment of individuals to treatment.
We do so using the fact that Section III discusses how we estimate θ_i for each individual and Table 3 reports that we find: $\tau(\theta_i) \approx 935 - 431\theta_i$ and $\gamma \approx 1390$. We can then use these values to calculate four values: a) the aggregate benefit of the program under the most efficient allocation of individuals to treatment; b) the aggregate benefit of the program under the allocation that a social planner who ignores the presence of peer effects would do; c) the expected aggregate benefit of the program under random assignment of individuals to treatment; and d) the actual aggregate benefit of the program under the realized assignment of individuals to treatment.

For our calculations, we restricted the social planner by: a) only allowing the social planner to assign individuals to treatment within the cohort they applied and b) keeping the number of individuals per program fixed. Given Equation (15), calculating the most efficient and least efficient allocation is straightforward. The first step is to calculate $\tau(\theta_i) + \gamma \cdot \theta_i$ for each individual. For each cohort k which has T_k treatment slots, the most efficient allocation then assigns the treatment to those individuals with the T_k largest values of $\tau(\theta_i) + \gamma \cdot \theta_i$. Similarly, a naive social planner who ignores the presence of peer effects would instead assign the treatment to those individuals with the T_k largest values of $\tau(\theta_i)$.

The results are shown in the first column of Table 4. It shows that the overall benefit of the program can vary widely, depending on who is assigned to the treatment. Under the optimal allocation the program increases the wages of participating individuals by over $1,823$ per quarter. While attempting to assign the slots optimally, a social planner who ignores the presence of peer effects, on the other hand, would lead to a program that is ineffective and only increases participants’ per-quarter earnings by 124 per quarter. This difference demonstrates the discussion under the assumption of linear treatment effect heterogeneity described in Appendix A.B. That is, disregarding peer effects (Naive Optimal) leads the social planner to select the T individuals with the lowest θ_i in each cohort, given the negative estimated relationship between own labor market history (θ_i) and outcomes (Table 3). However, the true optimal under the efficiency objective function is to assign treatment to the highest θ_i individuals, given the stronger and positive impact of peer effects.
compared to own labor market history. Thus, the “Naive Optimal” assignment is actually the least efficient allocation of individuals to treatment. The results shown here are not dependent on the linearity assumption, however; we obtain very similar estimates when we allow $\tau(\theta_i)$ to be a higher order polynomial. We also note that since the peer effect is much larger than the own labor history impact in this context, the social planner could incorrectly assume relatively smaller peer effects and still make the optimal assignment with regards to efficiency.

Naturally, this analysis relies strongly on the assumption of linear-in-means peer effects and involves extrapolating that linear relationship outside the range that it was estimated on. Furthermore, as Carrell et al. (2013) show, exploiting peer effects is fraught with challenges. We therefore do not view these estimates as proof positive that the job training program we study would have had a negligible impact on participants had all the individuals with the lowest labor market history in a cohort been the ones assigned to the program nor that the effect of the program would be twice as large had the individuals been assigned optimally, rather than randomly. Instead, we view this result as indicative of our main conclusion, that the presence of peer effects (even linear-in-means peer effects) can have a large impact of the efficacy of a program.

VI.B Equity Calculations

Like in Section II, we next consider a Rawlsian social planner who wants to choose the treatment allocation to maximize the worst-off individual. An additional challenge here is that the optimal allocation decision depends in part on $y_i(0)$, which is unobservable. We have, however, generated predictions of $y_i(0)$ when we conducted the residualization. We therefore use these predictions to approximate $y_i(0)$.\(^{15}\)

Furthermore, the complex nature of the Rawlsian social planner’s utility function makes maximizing the utility function more computationally challenging than maximizing Equa-

\(^{15}\)Another approach is to use as our approximation of $y_i(0)$ the baseline wages that individuals received, which we observe. We get similar results when we use their baseline wages as our approximation of $y_i(0)$, rather than the machine learning predictions.
tion (15). However, we can leverage the unique form of the optimal allocation as discussed in Theorem 2 to make this maximization possible. Specifically, the results mean we can consider only $T_k - 1$ possible optimal treatment allocations for each cohort rather than consider each of the $\frac{N_k!}{(N_k - T_k)! T_k!}$ total number of possible treatment allocations; here T_k is the number of treated individuals in each cohort and N_k is the total number of individuals in the cohort.

Like before, we require the planner to exactly fill the number of slots that were available and only allow them to allocate an individual to a training program if they applied to the program, i.e. if the individual was in the cohort. We then consider the utility of the social planner under the optimal assignment, the assignment they would choose if they ignored peer effects, the expected utility under random assignment, and the actual utility under the realized assignment.

When calculating the social planner’s utility, we assume a form of narrow-framing by the social planner (Barberis et al. (2006)). More specifically, we assume that while she cares only about the individual with the minimum outcome within each cohort, her overall utility is the average of this utility across the cohorts. We make this assumption to ensure that the treatment assignment of each cohort has impact to the overall utility. An alternative interpretation is that a different Rawlsian social planner makes the treatment allocation decision for each cohort.

These results are shown in the second column of Table 4. Again, a social planner who naively ignores the presence of peer effects does much worse than the social planner who accounts for peer effects. In the job training program estimation here, the social planner can incorrectly assume very small peer effects and still arrive at a minimum realized earnings that is very close to the optimal level, albeit with a different allocation decision. This is because of Theorem 2, wherein under peer effects, the social planner may begin switching out medium $y_i(0)$ individuals, who will still fare better in absence of treatment than the lowest outcome, and switching in the highest θ_i individuals, whose peer effects will pull up the outcome for the lowest trainee. Given the smaller size of many of these cohorts, switching only a few such individuals can have dramatic effects on the average labor history.
VII Conclusion

In job training programs, as in many other contexts, there are a limited number of seats into which a policy maker must assign individuals. This leads to the question of who should be admitted to training programs if peer effects are large. Is it optimal to only train those most in need or should some less needy individuals be admitted in order to capture the positive impact they have on other participants? Does the answer depend on the policy makers’ utility function?

Our theoretical analysis first shows that the presence of peer effects generally leads an optimizing policy maker to assign seats to relatively more able individuals, regardless of her utility function. For example, we show that even a policy maker who cares only about equity, while ensuring that some seats go to the most needy, will also potentially reserve some seats for the relatively more able individuals.

Our empirical analysis demonstrates that these observations are not merely of academic interest. The presence of a linear-in-means peer effect has a large impact on the efficiency of job training programs and changes the optimal allocation of the limited training seats. We use the random assignment of individuals to treatment groups to skirt many of the issues prevalent in estimating peer effects and provide the first evidence of large peer effects in the context of job training programs. Our estimates indicate that the heterogeneous treatment effect due to peer effects is equivalent to roughly half of the average treatment effect; formally, the relative effectiveness of two programs which differ in peer average labor market history by a one-standard deviation is roughly half of the average treatment effect. We then consider two types of social planner utility functions: one that emphasizes efficiency and another that emphasizes equity. In either case, we show that the social planner’s utility could be greatly increased if she allocated slots optimally and that accounting for peer effects is quite important when determining the optimal assignment.
The results from this study provide guidance to practitioners in the allocation of scarce resources in many education and training settings. For example, who should be granted access to extra-curricular programs that aim to supplement classroom learning? If seats in these programs are scarce, whether the goal is to raise the outcomes of the lowest performing students or to raise the outcome averaged over all students, our findings suggest that the presence of peer effects may well make it optimal to implement an admission procedure that ensures some participants are from each end of the academic spectrum. While assigning scarce resources to more affluent children should be done with care, our results suggest that in some limited contexts that may well be the best way to improve outcomes for the most disadvantaged children.

Finally, training and learning occurs in many settings, not all of which are formal. One can imagine a manager who is tasked with deciding which of her employees are trusted to work on solo projects and which should be grouped into team. Our results suggest that there may be some value in assigning the high ability workers to the team, as a way to capture their peer effects and improve the ability of lower-performing members of the team. Of course, whether this is optimal from an efficiency perspective in the workplace is likely to depend on whether peer effects function through explicit teaching or through example. If the peer effects from the more productive members of a team require that they reduce their own output, then our results might not generalize to the workplace. If, on the other hand, peer effects operate through example, then peer effects can be realized at little cost.

Better understanding why we find such large peer effects in the job training program is therefore of crucial importance if one is to consider how what our results imply about similar decisions in alternative contexts. A more full understanding of the mechanisms may also inform ways in which job training programs could be improved; for example, if the peer effects are due to example, having participants in a job training program shadow high ability individuals who previously participated in the training may be a way to improve the effectiveness of the program. While not providing a clear answer on the mechanisms, by showing both that there are large peer effects in job training programs and that these
can greatly impact the effectiveness of such programs, we highlight the importance of more research into how individuals interact in these programs. More generally, our paper also highlights that peer effects play a crucial and under-appreciated role in determining the optimal assignment of individuals to programs and in explaining cross-program treatment effect heterogeneity.
References

REFERENCES

REFERENCES

Kempe, David, Jon Kleinberg, and Éva Tardos, “Maximizing the Spread of Influence through a Social Network,” in “Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining” KDD ’03 Association for Computing Machinery New York, NY, USA 2003, pp. 137–146.

VIII Tables and Figures

VIII.A Tables

Table 1: Description of training cohorts

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Area</th>
<th>Cohorts</th>
<th>Number Treatment</th>
<th>Number Control</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced manufacturing</td>
<td>Electrical</td>
<td>5</td>
<td>87</td>
<td>79</td>
<td>1011</td>
</tr>
<tr>
<td></td>
<td>Pipefitting</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Welding</td>
<td>1</td>
<td>11</td>
<td>8</td>
<td>57</td>
</tr>
<tr>
<td>Health care</td>
<td>Medical billing and coding</td>
<td>4</td>
<td>42</td>
<td>37</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>Patient access representative</td>
<td>1</td>
<td>19</td>
<td>20</td>
<td>195</td>
</tr>
<tr>
<td>Information technology</td>
<td>Information technology</td>
<td>8</td>
<td>72</td>
<td>68</td>
<td>757</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20</td>
<td>237</td>
<td>218</td>
<td>2252</td>
</tr>
</tbody>
</table>

*Note: The number of observations are post-training quarterly observations of outcomes, while the number treatment and number control are the unique number of individuals.

Table 2: Baseline characteristics of sample

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Treatment</th>
<th>Difference</th>
<th>Difference 95% CI</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>0.556</td>
<td>0.566</td>
<td>0.949</td>
<td>[-0.267, 0.286]</td>
<td>0.019</td>
</tr>
<tr>
<td>Over 35 years old</td>
<td>0.553</td>
<td>0.596</td>
<td>0.310</td>
<td>[-0.045, 0.131]</td>
<td>0.088</td>
</tr>
<tr>
<td>Working</td>
<td>0.527</td>
<td>0.500</td>
<td>0.517</td>
<td>[-0.123, 0.066]</td>
<td>0.055</td>
</tr>
<tr>
<td>Prior year’s income > $5,000</td>
<td>0.610</td>
<td>0.641</td>
<td>0.610</td>
<td>[-0.093, 0.145]</td>
<td>0.065</td>
</tr>
<tr>
<td>Black</td>
<td>0.887</td>
<td>0.915</td>
<td>0.323</td>
<td>[-0.025, 0.084]</td>
<td>0.092</td>
</tr>
<tr>
<td>Proportion of prior quarters</td>
<td>0.611</td>
<td>0.600</td>
<td>0.802</td>
<td>[-0.096, 0.074]</td>
<td>0.028</td>
</tr>
<tr>
<td>employed</td>
<td>3788.713</td>
<td>3522.633</td>
<td>0.531</td>
<td>[-1100.0, 562.3]</td>
<td>0.066</td>
</tr>
</tbody>
</table>

*Note: The counts of the individuals who are included in the averages are shown in Table 1 above.
Table 3: Average Treatment Effect, Peer Effect, Individual-Level Treatment Heterogeneity

<table>
<thead>
<tr>
<th></th>
<th>(1) Log Wage</th>
<th>(2) Total Wage</th>
<th>(3) Employed</th>
<th>(4) Total Wage Conditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact of Peers’ Avg. Labor Market History on Treatment Effect</td>
<td>2.026***</td>
<td>1390.8*</td>
<td>0.219***</td>
<td>1142.9</td>
</tr>
<tr>
<td></td>
<td>(0.756)</td>
<td>(777.3)</td>
<td>(0.0811)</td>
<td>(846.4)</td>
</tr>
<tr>
<td>Impact of Own Labor Market History on Treatment Effect</td>
<td>-0.238</td>
<td>-430.9**</td>
<td>-0.0254</td>
<td>-773.0***</td>
</tr>
<tr>
<td></td>
<td>(0.211)</td>
<td>(217.7)</td>
<td>(0.0231)</td>
<td>(223.9)</td>
</tr>
<tr>
<td>Average Treatment Effect</td>
<td>0.866***</td>
<td>935.9***</td>
<td>0.0784**</td>
<td>1330.1***</td>
</tr>
<tr>
<td></td>
<td>(0.259)</td>
<td>(265.3)</td>
<td>(0.0323)</td>
<td>(297.6)</td>
</tr>
</tbody>
</table>

Cohort Fixed Effects: X; Time Period Fixed Effects: X; Strata Fixed Effects: X; Number of Clusters: 174; Observations: 1632

*p < 1%, **p < 5%, *p < 10%. An observation is an individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training cohort for the individuals assigned to the treatment. While labeled “log wage”, we use an inverse hyperbolic sine function to allow for zero value in the outcome. “Total Wage Conditional” uses the total wage as the outcome, but only includes individuals with a positive wage in the quarter.

Table 4: Impact of Treatment Assignment Mechanism on Social Planner’s Utility

<table>
<thead>
<tr>
<th>Treatment Assignment</th>
<th>Social Planner is Focused On: Efficiency</th>
<th>Social Planner is Focused On: Equity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td>1,823</td>
<td>1,329</td>
</tr>
<tr>
<td>Naive Optimal</td>
<td>124</td>
<td>388</td>
</tr>
<tr>
<td>Random</td>
<td>938</td>
<td>285</td>
</tr>
<tr>
<td>Realized</td>
<td>893</td>
<td>308</td>
</tr>
</tbody>
</table>

36
VIII.B Figures

Figure 1: Labor Market History Distributions

Note: This figure shows the distributions of individual labor market history and peer average labor market history. See Section III.C for information on how this measure is constructed.
Figure 2: Impact of Peers Over Time

(a) Effect on Total Wages

(b) Effect on Employment Status

Note: These figures show how the importance of an individual's peers evolves in the quarter during and quarters after completing a job training program. The coefficient is estimated using Equation 14, when restricting the sample to the specific quarter; the coefficient being shown here is γ in that expression. The vertical lines highlight the 95% confidence interval. See Section IV for more details on the specification.
A Further Exploration of the Model and Proofs

A.A General Result

Theorem. 1 For a compensated change from any γ to $\gamma + \Delta$ with $\Delta > 0$, the average θ_i of the treated individuals after the change is no lower than before the change, i.e.:

$$\frac{1}{T} \sum_{v_j} \theta_j T_{j}^{opt}(\gamma + \Delta) \geq \frac{1}{T} \sum_{v_j} \theta_j T_{j}^{opt}(\gamma)$$ \hspace{1cm} (16)

Proof. Our approach to the proof is to consider any assignment where the average θ_i of the treated individuals is lower than the optimal assignment before the compensated change, which we refer to as the “initial optimal assignment.” We then show that the social planner gains more from switching from this assignment to the initial optimal assignment after the compensated change than before the compensated change. Since the initial optimal assignment is optimal before the compensated change, it follows that none of the treatment assignments where the average θ_i of the treated individuals is lower than in the initial optimal assignment can be optimal after the compensated change.

To show this formally, denote the social planner’s utility under treatment assignment T before the compensated change as $U(T, \gamma)$ and after the compensated change as $U(T, \gamma + \Delta)$. Next, consider any T' such that:

$$\frac{1}{T} \sum_{v_j} \theta_j T_{j}^{opt}(\gamma) > \frac{1}{T} \sum_{v_j} \theta_j T'_{j}$$ \hspace{1cm} (17)

Without the assumption that T^{opt} is unique, we would consider a T' that satisfies the constraint below for every choice in T^{opt}. The logic below shows that the minimum value of $\frac{1}{T} \sum_{v_j} \theta_j T_{j}^{opt}(\gamma + \Delta)$ is weakly larger than the minimum value of $\frac{1}{T} \sum_{v_j} \theta_j T_{j}^{opt}(\gamma)$. To show that $\frac{1}{T} \sum_{v_j} \theta_j T_{j}^{opt}(\gamma)$ is increasing in the strong set order, we would also need to show that the maximum value of $\frac{1}{T} \sum_{v_j} \theta_j T_{j}^{opt}(\gamma)$ is weakly increasing. Considering a T' that satisfies the constraint below for at least one choice in T^{opt} and following the same logic below is sufficient to conclude that.
We then get that:

\[
\left[U(T', \gamma + \Delta) - U(T^{\text{opt}}(\gamma), \gamma + \Delta)\right] - \left[U(T', \gamma) - U(T^{\text{opt}}(\gamma), \gamma)\right] = (18)
\]

\[
\left[U(T', \gamma + \Delta) - U(T', \gamma)\right] - \left[U(T^{\text{opt}}(\gamma), \gamma + \Delta) - U(T^{\text{opt}}(\gamma), \gamma)\right] = (19)
\]

\[
U(T', \gamma + \Delta) - U(T', \gamma) \leq 0 \quad (20)
\]

The first equality is just a re-arrangement and the second comes from the fact that under the compensated change utility is unaffected if the treatment choice does not change from the initial optimal choice, i.e. \(U(T^{\text{opt}}(\gamma), \gamma + \Delta) = U(T^{\text{opt}}(\gamma), \gamma)\). Finally, the last inequality comes from the fact that the \(\tau_i\) post-compensation change under treatment assignment \(T'\) minus \(\tau_i\) pre-compensation change and treatment assignment \(T'\) is equal to:

\[
\Delta \cdot \left[\frac{1}{T} \sum_{j=1}^{T} \theta_j T_{j}^{\text{opt}}(\gamma + \Delta) - \frac{1}{T} \sum_{j=1}^{T} \theta_j T_{j}^{\text{opt}}(\gamma)\right] < 0. \quad \text{Since everyone’s } \tau_i \text{ is lower, and hence all the treated individuals’ } y_i \text{ is lower, we get that } U(T', \gamma + \Delta) - U(T', \gamma) \leq 0.
\]

Thus, we have that \(\left[U(T', \gamma + \Delta) \leq U(T^{\text{opt}}(\gamma), \gamma + \Delta)\right] < \left[U(T', \gamma) - U(T^{\text{opt}}(\gamma), \gamma)\right]\).

However, we further know that \(U(T', \gamma) < U(T^{\text{opt}}(\gamma), \gamma)\), since \(T^{\text{opt}}\) is the optimal treatment assignment and we assume that the optimal treatment assignment is unique. Thus, it must be that \(U(T', \gamma + \Delta) < U(T^{\text{opt}}(\gamma), \gamma + \Delta)\), and so \(T'\) cannot be the optimal treatment assignment post-compensated change. Since this is true for any \(T'\) that lowers the average \(\theta_i\) of the treated individuals, the optimal treatment choice post-compensated change must weakly increase the average \(\theta_i\) of the treated individuals.

Finally, we note that without the assumption that \(T^{\text{opt}}\) is unique, we could consider a \(T'\) that satisfies the constraint in Equation (17) for every choice in \(T^{\text{opt}}\). The logic above shows that the minimum value of \(\frac{1}{T} \sum_{j=1}^{T} \theta_j T_{j}^{\text{opt}}(\gamma + \Delta)\) is weakly larger than the minimum value of \(\frac{1}{T} \sum_{j=1}^{T} \theta_j T_{j}^{\text{opt}}(\gamma)\). To show that \(\frac{1}{T} \sum_{j=1}^{T} \theta_j T_{j}^{\text{opt}}(\gamma)\) is increasing in the strong set order, we also need to show that the maximum value of \(\frac{1}{T} \sum_{j=1}^{T} \theta_j T_{j}^{\text{opt}}(\gamma)\) is weakly increasing. Considering a \(T'\) that satisfies the constraint in Equation (17) for at least one choice in \(T^{\text{opt}}\) and following the same logic below is sufficient to conclude that.
A.B Efficiency Considerations

In Remark 1, we show that a social planner who cares only about efficiency will give assign the treatment slots to the T individuals with the largest values of $\tau(\theta_i) + \gamma \theta_i$. We now add more structure to $\tau(\theta_i)$, which allows us to more explicitly define which individuals receive the treatment.

Homogenous Treatment Effects. Suppose that all individuals are affected equally by the treatment, i.e. that $\tau(\theta_i) = \tau$ for some τ. Then a social planner focused on efficiency will assign the T individuals with the largest values of θ_i to the treatment.

Linear Treatment Effect Heterogeneity. Suppose that $\tau(\theta_i) = \alpha \theta_i + \tau$ for some τ and α. Then a social planner focused on efficiency will assign either the T individuals with the largest values of θ_i or the T individuals with the smallest values of θ_i to the treatment.

Convex Treatment Effect Heterogeneity. Suppose that $\tau(\theta_i)$ is such that the treatment effect is most beneficial for those with low values of θ_i, i.e. $\frac{\partial \tau(\theta_i)}{\partial \theta_i} < 0$, and that this differential impact lessens as θ_i increases, i.e. $\frac{\partial^2 \tau(\theta_i)}{\partial \theta_i^2} > 0$. Then there exists a K such that the social planner assigns the treatment to the K individuals with the lowest values of θ_i and the $T - K$ individuals with the largest values of θ_i.

Proof. The lemmas all follow directly from the fact that the social planner will assign the treatment slots to the T individuals with the largest values of $\tau(\theta_i) + \gamma \theta_i$. □

A.C Equity Considerations

Theorem 2 in Section II states that there are two types of individuals: those with the lowest values of $y_i(0)$ and those with the highest θ_i. Below, we re-state the formal theorem and prove the result.

Theorem. 2 Suppose that a social planner chooses T to maximize Equation (11). Then the optimal allocation of treatment slots involves assigning the treatment to the K individuals with the lowest values of $y_i(0)$ and the $T - K$ individuals with the highest values of θ_i.

41
Proof. Let individual L be any individual that is untreated under the optimal allocation. We will then show that if individual K is treated in the optimal allocation and $\theta_L > \theta_K$, it must be the case that $y_K(0) \leq y_L(0)$, which is sufficient to prove the theorem.

To do so, we will add a bit of notation. First, we will denote $y_i(T)$ as individual i’s allocation under treated assignments T. Similarly, we will denote the Rawlsian social planner’s utility under an allocation T as $U(T) \equiv \min \{ y_1(T), y_2(T), ..., y_N(T) \}$. We will then compare the optimal allocation, denoted as T_{opt}, to the allocation that is identical to T_{opt} except for the fact that K is not treated and L is; we denote the second allocation as T'.

To do so, we start by showing that if $\theta_L > \theta_K$, then K must be the individual with the minimum value of y_i under the treatment assignment T'. To do so, we first note that:\n
$$y_i(T_{\text{opt}}) - y_i(T') = \begin{cases} \gamma \frac{1}{T-1} (\theta_K - \theta_L) \cdot T_i & \text{if } i \neq K, L \\ \tau(\theta_K) + \gamma \frac{1}{T-1} \sum_{j \neq K} \theta_j T_j & \text{if } i = K \\ -\tau(\theta_L) - \gamma \frac{1}{T-1} \sum_{j \neq L} \theta_j T_j & \text{if } i = L \end{cases}$$

(21)

This comes from the fact that the treatment assignment for all individuals other than K and L is the same between T_{opt} and T', which allows us to write this without clarifying whether T_i refers to the i’s assignment under T_{opt} or T', unless $i = K$ or L.

Denoting M as the individual with the minimum value of y_i in T', we next note that $y_M(T_{\text{opt}}) - y_M(T') \geq U(T_{\text{opt}}) - U(T')$. This follows from the fact that $U(T') = y_M(T')$ and $y_M(T_{\text{opt}}) \geq U(T_{\text{opt}})$. We can then conclude that $y_M(T_{\text{opt}}) - y_M(T') \geq 0$, since by definition of optimal it must be the case that $U(T_{\text{opt}}) \geq U(T')$. Finally, Equation (21) shows that individual K is the only individual whose y_i increases when moving from T' to T_{opt} and so individual K must be the one with the minimum value of y_i in T'.17

Importantly, the fact that individual K is the individual minimum value of y_i in T' and the fact that by assumption individual K is not assigned to the treatment in T', we know

17The fact that individual L’s outcome decreases relies on the assumption that $\tau_i > 0$ for all i. 42
that \(U(T') = y_K(0) \). We also know that \(U(T^{\text{opt}}) \leq y_L(0) \), since individual \(L \) is untreated in \(T^{\text{opt}} \). Thus, \(y_L(0) - y_K(0) \geq U(T^{\text{opt}}) - U(T') \). Since \(T^{\text{opt}} \) is the optimal assignment, it follows that \(U(T^{\text{opt}}) - U(T') \geq 0 \) and so \(y_L(0) \geq y_K(0) \).

\[\text{B Residualization Motivation} \]

Here we discuss the motivation behind our residualization approach, which stems in part from the following theorem.

Theorem 3. Let \(T_i \) be an indicator that denotes whether individual \(i \) was assigned to treatment. Further, suppose that all \(Z_i \) and \(X_i \) are not affected by the treatment and that treatment is randomly assigned. Consider two OLS regressions:

\[
y_i = \hat{\alpha}_0 + \hat{\beta}_0 X_i + \hat{\tau}_0 T_i + \hat{\gamma}_0 X_i \cdot T_i \tag{22}
\]

\[
y_i - g(Z_i) = \hat{\alpha}_1 + \hat{\beta}_1 X_i + \hat{\tau}_1 T_i + \hat{\gamma}_1 X_i \cdot T_i \tag{23}
\]

Then under standard assumptions, both \(\hat{\tau}_0 \) and \(\hat{\tau}_1 \) converge to the same \(\tau \) and, similarly, both \(\hat{\gamma}_0 \) and \(\hat{\gamma}_1 \) coverage to the same \(\gamma \) regardless of the function \(g(Z_i) \).

Proof. Given the linearity, it is sufficient to show that in a regression of the form:

\[
g(Z_i) = \hat{\alpha}_2 + \hat{\beta}_2 X_i + \hat{\tau}_2 T_i + \hat{\gamma}_2 X_i \cdot T_i \tag{24}
\]

we get that \(\hat{\tau}_2 \to 0 \) and \(\hat{\gamma}_2 \to 0 \). Next we define \(a \) and \(b \) as the linear projection parameters of \(g(Z_i) \) onto \(X_i \) and a dummy, i.e. \(g(Z_i) = a + bX_i + e_i \) where \(\mathbb{E}[e_i] = 0 \) and \(\mathbb{E}[e_iX_i] = 0 \). Note that the assumption that \(X_i \) and \(Z_i \) are unaffected by treatment and \(T_i \) is randomly assignment, ensures that \(\mathbb{E}[f(X_i, Z_i)|T_i = 1] = \mathbb{E}[f(X_i, Z_i)|T_i = 0] \) for any function of \(X_i \) and \(Z_i \). Since \(e_i \) is a function of \(Z_i \) and \(X_i \) and \(\mathbb{E}[e_i] = 0 \) and \(\mathbb{E}[e_iX_i] = 0 \), it therefore follows that \(\mathbb{E}[e_iT_i] = 0 \) and \(\mathbb{E}[e_iX_iT_i] = 0 \). Thus, under the standard assumptions: \(\hat{\alpha}_2 \to a \), \(\hat{\beta}_2 \to b \), \(\hat{\tau}_2 \to 0 \), and \(\hat{\gamma}_2 \to 0 \).

\[\text{\[18\]Note that this omits some technical details required to ensure that the expectations exist.} \]
We next turn our attention to the question of what function $g(Z_i)$ is optimal. Given that we want to minimize the variance of our estimated peer effect we want to choose $g(Z_i)$ to minimize $X'\Sigma X$ where Σ is the variance-covariance matrix of the error terms $\epsilon_{i,k,t}$ in Equation (14) and X is the matrix of covariates from Equation (14). However, we cannot do this directly without knowing the parameters we aim to estimate or the correlation structure between outcomes. One could push harder on this approach and potentially develop a feasible generalized least squares, in which one iteratively: a) estimates Equation (14) inefficiently, b) uses these coefficients to approximate Σ; c) use this to determine the optimal $g(Z_i)$; d) estimate $\hat{g}(Z_i)$; and then re-estimate Equation (14) using the resulting residuals. Instead, we opt for a simpler approach and note that setting $g(Z_i) = \frac{1}{2}E[y_{i,k,t}|Z_i, T_i = 1] + \frac{1}{2}E[y_{i,k,t}|Z_i, T_i = 0]$ minimizes $V(y_i - g(Z_i))$. We therefore estimate $\frac{1}{2}\hat{E}[y_{i,k,t}|Z_i, T_i = 1] + \frac{1}{2}\hat{E}[y_{i,k,t}|Z_i, T_i = 0]$ and use this to residualize the outcome which, while not optimal, significantly reduces the variance of the estimated peer effects.

Note finally that while not strictly necessary, doing the residualization in a separate step than the regression allows us to easily estimate a non-linear function $\hat{g}(Z_i)$, which we do using a random forest regression, while sticking with a linear specification to estimate the main effects.

C Robustness Checks

C.A IV Regressions

As in most experiments, compliance was not perfect in this study. For the main results, we ignore this complication and use “assigned to treatment” in place of “attended treatment.” Since we observe whether an individual attended treatment, we can use the average labor market history of those assigned to treatment as an instrument for the average labor market history of those who actually attended the training. The results, shown below in Table 3, show that doing so increases the magnitude of the estimated peer effects. These changes
are all relatively small in magnitude, however, and the IV method does not change the statistical significance or economic interpretation of the empirical results. This is due to the fact that compliance was relatively high (~85% of those assigned treatment attended the training and none assigned control attended) and is the reason why we ignore imperfect compliance in the main specification.

C.B Residualization Alternatives

The motivation for our residualization approach is discussed above; here we show that alternative approaches provide a similar story. We first use the results from the random forest regression used in the residualization, but instead of residualizing the outcome here we include $\tilde{E}[y_{i,k,t} | Z_i, T_i = 0]$ as a covariate in the final regression. In addition, we show the results when no additional covariates are added. The results are shown below in Table 4. The standard errors of both approaches are larger than in our main specification, and the point estimate of the peer effect on total wages is lower when no covariates are included than when the residualization is done. However, in all specification we find evidence of peer effects on the probability that an individual is employed and on her log wage.

D Simulation with Added Noise to Variable

As discussed in Feld and Zölitz (2017) and Angrist (2014), measurement error in the covariates can increase the peer effect estimates when the peer groups are not formed under random assignment. Of course, in our context the peer groups are in large part formed by the random assignment of individuals to treatment, at least within cohort. Since there is non-random assignment of individuals to cohort, however, we follow Feld and Zölitz (2017)’s suggestion and conduct a Monte Carlo simulation to ensure that measurement error does not bias upward the coefficient estimates.

We start the simulation by adding an extra error term to each individual’s labor market history, with the error term drawn from a normal distribution with mean zero and standard
deviation that varies from zero to one. We use this noisy measure of each individual’s labor market history as the new measure of θ_i. Given this, we then estimate the regression specified in Equation (14) to generate new parameter estimates.

We repeat this procedure 250 times for each standard deviations ranging from 0.25 to 1. Figure 5 shows the average peer effect estimate of these simulations for each standard deviation. As the standard deviation of the error term increases, the size of the estimated peer effect decreases.

E Appendix Tables and Figures

E.A Appendix Tables

Figure 3: IV Regressions

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log Wage</td>
<td>Total Wage</td>
<td>Employed</td>
<td>Total Wage Conditional on Employment</td>
</tr>
<tr>
<td>Impact of Peers’ Ave. Labor Market History on Treatment Effect</td>
<td>2.275***</td>
<td>1561.9*</td>
<td>0.246***</td>
<td>1254.6</td>
</tr>
<tr>
<td></td>
<td>(0.867)</td>
<td>(882.9)</td>
<td>(0.0929)</td>
<td>(925.0)</td>
</tr>
<tr>
<td>Impact of Own Labor Market History on Treatment Effect</td>
<td>-0.299</td>
<td>-452.0**</td>
<td>-0.0287</td>
<td>-782.5***</td>
</tr>
<tr>
<td></td>
<td>(0.221)</td>
<td>(209.8)</td>
<td>(0.0230)</td>
<td>(216.8)</td>
</tr>
<tr>
<td>Average Treatment Effect</td>
<td>0.859***</td>
<td>895.7***</td>
<td>0.0721**</td>
<td>1272.6***</td>
</tr>
<tr>
<td></td>
<td>(0.248)</td>
<td>(268.2)</td>
<td>(0.0323)</td>
<td>(302.8)</td>
</tr>
<tr>
<td>Cohort Fixed Effects</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Time Period Fixed Effects</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Strata Fixed Effects</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sample</td>
<td>IV Regression Post-Training</td>
<td>IV Regression Post-Training</td>
<td>IV Regression Post-Training</td>
<td>IV Regression Post-Training</td>
</tr>
<tr>
<td>Number of Clusters</td>
<td>174</td>
<td>174</td>
<td>174</td>
<td>139</td>
</tr>
<tr>
<td>Observations</td>
<td>1632</td>
<td>1632</td>
<td>1632</td>
<td>1095</td>
</tr>
</tbody>
</table>

*** p<1%, ** p<5%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual-level for the individuals not assigned to the treatment and the training cohort for the individuals assigned to the treatment. While labeled “log wage,” we use an inverse hyperbolic sine function to allow for zero value in the outcome. In this regression, we use the assigned treatment assignment as an IV for the realized treatment assignment.
Figure 4: Residualization Alternatives

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log Wage</td>
<td>Total Wage</td>
<td>Employed</td>
<td>Total Wage Conditional on Employment</td>
<td>Log Wage</td>
<td>Total Wage</td>
<td>Employed</td>
</tr>
<tr>
<td>Impact of Peers' Ave. Labor Market History on Treatment Effect</td>
<td>1.955**</td>
<td>1240.4</td>
<td>0.214**</td>
<td>623.1</td>
<td>1.548*</td>
<td>708.0</td>
<td>0.180*</td>
</tr>
<tr>
<td>Impact of Own Labor Market History on Treatment Effect</td>
<td>-0.246</td>
<td>-436.8**</td>
<td>-0.0216</td>
<td>-602.4***</td>
<td>-0.0136</td>
<td>-352.8</td>
<td>0.00545</td>
</tr>
<tr>
<td>Treatment Effect at Averages</td>
<td>0.707***</td>
<td>788.2***</td>
<td>0.0475**</td>
<td>936.5***</td>
<td>0.17</td>
<td>729.7**</td>
<td>0.0468</td>
</tr>
<tr>
<td>Other Controls</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Log wage, ** p<1%, * p<10%. An observation is a individual-time period. The standard errors are clustered at the individual level for the individuals not assigned to the treatment and the training cohort for the individuals assigned to the treatment. While labeled "log wage," we use an inverse hyperbolic sine function to allow for zero value in the outcome. Unlike the main specification, these outcomes are not residualized prior to the regression.
E.B Appendix Figures

Figure 5: Measurement Error Simulation

Note: The above figure shows the results of a simulation, where additional measurement error was added to each individual’s labor market history and then estimation was conducted in the same manner as is done in the main analysis. The x-axis shows the standard deviation of the added measurement error, while the y-axes show the estimated coefficients.