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1 Introduction

There is an emerging consensus that student attendance is both a critical input and an

intermediate outcome of the education production function. The U.S. Department of Edu-

cation recently called chronic absenteeism, defined as missing at least 10% of school days, “a

hidden educational crisis.”1 Accordingly, education policy-makers are increasingly incorpo-

rating student attendance into accountability measures used to gauge schools’ and teachers’

performance, most notably via the Every Student Succeeds Act (ESSA), which has renewed

interest in interventions to reduce student absenteeism (Bauer et al., 2018; Gottfried and

Hutt, 2019). At the same time, growing evidence shows that a variety of school-based inputs

and interventions including effective teachers, small classes, and information-based nudges,

can reduce absenteeism (Bergman and Chan, 2021; Gershenson, 2016; Liu and Loeb, 2021;

Rogers and Feller, 2018; Tran and Gershenson, 2021).

Heightened policy and research interest in student absenteeism is prefaced on the well-

documented correlation between students’ absences and educational outcomes representing

a causal relationship. While it is intuitive to assume a causal relationship, identification

remains a persistent challenge (Jacob and Lovett, 2017). The main as yet unresolved threat

to identification is the likelihood that unobserved, time-varying, student-level shocks, such as

illness or a family emergency, confound existing estimates by affecting students’ attendance

and their academic performance. For example, several studies use various combinations of

student, family, school, teacher, and classroom fixed effects (FE) to control for the endo-

geneity of absences. While these studies represent an improvement over prior work, none

specifically controls for time-varying, student-specific shocks (Aucejo and Romano, 2016;

Gershenson et al., 2017; Gottfried, 2009, 2011). Another set of papers seek to identify causal

estimates by using variation induced by variables such as distance to school, snowfall, and

flu cases, to instrument for student absences (Aucejo and Romano, 2016; Goodman, 2014;

1U.S. Department of Education. Chronic absenteeism in the nation’s schools. From:
https://www2.ed.gov/datastory/chronicabsenteeism.html

1



Gottfried, 2010); these studies find significant effects of absences on achievement, though

whether the relevant exclusion restrictions are valid is debatable and, in any case, the re-

sulting local average treatment effect estimates are not necessarily the parameters of broad

policy interest, in the sense that absences induced by these instruments might be immutable.

The dearth of credible evidence on how student absences affect academic performance,

particularly in middle and high school, is troubling because how, when, and where student

absences affect academic performance has important implications for the design and targeting

of interventions, the consequences of absence-based accountability policies, and the role

of student absences in contributing to socio-demographic gaps in educational outcomes.2

Moreover, middle and high school students are at a critical developmental stage as they

prepare for the transition into college and young adulthood, so understanding the causes

and consequences of absences during this time is essential for efforts to reduce high school

dropout rates and increase college readiness and enrollment.

The current study contributes to the literature on the impacts of student class-absences

by overcoming the threat posed by unobserved student-year shocks using two similar identi-

fication strategies that exploit between-subject differences in students’ annual absences. We

do so by using a decade’s worth of administrative data from a large and diverse urban school

district in California that include the date and class period of all middle and high school

student absences. Our preferred model extends typical value-added models of the education

production function by using total absences (across subjects) to proxy for year-specific stu-

dent shocks and then estimates the effect of subject-j absences on achievement in subject

j. A related approach that stacks the data by subject and conditions on student-by-year

FE yields similar results: ten absences reduce math and ELA achievement by 3 to 4% of a

2The majority of credible evidence on the impact of absences comes from the elementary school setting; a
notable exception is Kirksey (2019), who uses student fixed-effects models to show that high school students’
full-day absences harm achievement in a small urban district in California. Interventions designed to reduce
student absences are similarly disproportionately focused on the early grades (Bauer et al., 2018). Notable
exceptions here are Rogers and Feller (2018), who found that a light-touch information intervention reduced
chronic absenteeism rates by about 10% in both primary and secondary grades, and Bergman and Chan
(2021), who found that text messages to the parents of middle and high school students about their grades
and attendance increased student attendance by 12%.
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test-score standard deviation (SD), which are both practically and statistically significant.

However, they are only 50 to 60% as large as estimates that do not account for possibly

endogenous student-year shocks, which highlights the utility of our approach and suggests

that existing estimates might similarly overstate the effects of absences.

Finally, we provide relatively novel evidence on the causal effects of high school student

absences on longer-term educational outcomes. Specifically, ten absences in the 9th grade

reduce both the probability of high school graduation and of ever enrolling in college by

2%. These results cross-validate the main test score results and show that absences not

only harm contemporaneous performance on state tests and in specific courses but have long

lasting consequences for educational attainment, which is what ultimately matters. These

estimates are arguably causal, as we apply selection-on-observables bounding methods that

show that an implausibly large degree of sorting on unobservables is needed to explain away

the estimated effects (Altonji et al., 2005; Oster, 2019).

The paper proceeds as follows. Section 2 describes the administrative dataset used in

our analyses. Section 3 describes our identification strategy. Section 4 presents the main

results on absences’ impacts on academic achievement and associated tests for heterogeneous

effects. Section 5 presents a number of sensitivity analyses and suggestive tests of the main

identifying assumptions, as well as estimated effects on course grades and a placebo exercise

that distinguishes between absences that occurred before, during, and after the standardized

testing window. Section 6 examines the long-run effects of ninth- and tenth-grade absences on

high school graduation and college enrollment. Finally, Section 7 concludes with a summary

and discussion of policy implications.
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2 Data

2.1 Administrative Data

Our main analyses use administrative data from a large urban school district in California

from the school years 2002-2003 through 2012-2013.3 It contains information on student at-

tendance, student and teacher demographics, and students’ academic performance, including

scores on state-mandated tests and course-level grades.

The attendance dataset is unique in that it contains students’ attendance records for each

course on each day, along with whether or not an absence was formally excused. During the

timeframe of the current study, teachers used paper scantron sheets to mark students as

absent, tardy, or present in each class period. Absences were marked as excused if the

school received a phone call from a parent or guardian providing reasons for the absence;

otherwise, the absence was marked as unexcused. Prior studies using the same data to

examine attendance gaps by socioeconomic status (Whitney and Liu, 2017) and teachers’

impacts on student attendance (Liu and Loeb, 2021) validate the attendance data’s accuracy.

These data are ideal for the current study for several reasons. First, rich class-level atten-

dance data which includes the class period, day, and course are rarely available to researchers.

Nearly all existing attendance studies use full-day absences to measure total absences. Since

part-day absences account for more than half of total class-absences in secondary school and

are mostly unexcused (Whitney and Liu, 2017), disregarding part-day absences may result in

considerable measurement error, which may bias estimates of the impact of absences on stu-

dent achievement, especially when part-day absences are nonrandomly distributed across the

student population. In addition, such nuanced data not only allow us to compute the total

class absences a student has for a specific class but also provide flexibility to code absences

3While the external validity of any analysis of a single school district is a potential concern, the rich
course-level and long-run data available here, as well as the large student population, make these data ideal
for the current study. Moreover, despite the somewhat unique demographic composition of the student body,
this large urban district faces many of the same challenges faced by other large districts.
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based on the exact date they occurred, a key feature that allows us to verify our identification

strategy. Lastly, the district has a large and diverse student body, which provides the power

and variation necessary to conduct subgroup analyses.

2.2 Constructing the Analytic Sample

We combine three databases to construct the analytic sample. First, we match the at-

tendance data to student course-taking data and identify the corresponding class, subject

area, and end-of-course grades. The specificity of the attendance data allows us to distin-

guish between full-day absences when a student misses every single class and part-day, or

course-specific absences. The latter facilitates the identification of subject-specific absences.

We focus our analysis on math and English language arts (ELA), as these two subjects are

consistently tested across all grade levels in state-mandated exams.4 We exclude remedial and

tutoring courses, study halls, and courses for English Language Learners (ELL) because the

instructional content of these courses is not covered in state standardized tests.5 This allows

us to observe the total number of absences, end-of-course grade, and state exam scores for

each student in each school year and subject. Second, we merge in a rich set of demographic

variables, including race/ethnicity, gender, ELL status, special education status, disability

status, and residential census tracts (which provide a measure of socioeconomic status).

In addition, we categorize absences as ones that occurred before, during, or after the

annual state standardized testing window. We refer to the testing window and not the

test date for two reasons. First, before 2009, we do not know the exact dates that schools

first administered the test; we only know that California required all standardized tests to be

administered within a 21-day window centered on the day on which 85% of yearly instruction

4Students in grades 2 through 11 were required to take state standardized tests during this time.
5We also exclude students who enrolled in multiple math or ELA classes in the same semester, as this

subgroup of students makes up less than 5% of the overall sample and are not comparable to the general
student population. These students tend to be special education students, students with individualized plans
for learning, or students who are otherwise on an alternative pathway to high school completion.
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is complete.6 Second, even when we do observe the exact date that a school began testing,

we do not observe the dates that individual students took the test, as not every student in a

school took the test on the same day for many reasons. Thus, while we can clearly identify

absences that occurred prior to the testing window–and thus before the test was taken–there

is some ambiguity as to whether absences late in the year occurred before or after the student

took the test. Accordingly, in our baseline model, we only use absences that took place prior

to the state-sanctioned testing window to estimate the effect of absences. We incorporate

testing window information as a falsification check in Section 5, given that absences after

the test date should not affect test scores.

Lastly, we augment the dataset to include several long-run outcomes. We observe whether

a student graduated from the district “on time” (i.e., four years after initial enrollment in

high school).7 We also observe students’ post-secondary enrollment data, which the district

obtained from the National Student Clearinghouse, a nonprofit organization that provides

degree and enrollment verification for more than 3,300 colleges and 97% of students nation-

wide (Dundar and Shapiro, 2016). Such data is available through the end of 2016, covering

slightly more than 55% of students in our sample.8 We incorporate these long-term out-

comes, including on-time high school graduation, immediate college enrollment, whether a

student ever enrolled in college, and whether it is a four-year or two-year college, to evaluate

whether absences in secondary school have effects above and beyond their immediate impact

on student achievement.

6In the last two years (2011-2012 and 2012-2013), the state expanded the testing window to 25 days,
which we account for in our categorization of absences.

7The district does not track graduation information for students who do not meet graduation require-
ments, drop out, or move away from the district prior to graduation. Based on the district’s suggestion,
we code students who should have graduated from high school prior to 2015 but whose graduation status is
missing as not having graduated on time.

8There is no college enrollment information for students who do not officially graduate or drop out from
the district. To be consistent, we code these students as not enrolling in college.
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2.3 Descriptive Statistics

The main analytic sample consists of over 70,000 students, whose average characteristics are

summarized in Table 1. The district is racially diverse: About 47% of students are Asian;

nearly one-quarter are Hispanic; and about 13% are Black. Given this diversity, it is not

surprising that a quarter of the students observed are flagged as ELLs. Average achievement

hovers slightly above zero across both subjects and score type.9 Lastly, over half of all

students attend some type of postsecondary institution after high school graduation.

In Figure 1 we observe that the distributions of total absences in math and ELA classes

are nearly identical. In both subjects, approximately one-fifth of students have zero absences

while a long tail indicates a nontrivial number of students who accumulate 18 or more

absences, a common definition of chronic absenteeism across most states.

[Table 1 and Figure 1 here]

Table 2 reports average absences and achievement across both subjects by student sub-

group. Absence patterns are similar across subjects. On average, students miss about eight

classes prior to the start of the state-mandated testing window. Students miss almost two

days of school during the testing window and another 1.5 days after. This dynamism presents

an opportunity for a falsification test of our main finding, which we discuss in Section 5.2.

Within-student SD of absences are relatively large compared to the overall SD, suggesting

that about half of the variation in absences occurs within, as opposed to between, students.

Table 2 also highlights racial gaps in attendance and achievement in both subjects. Hispanic

and Black students miss two and three times as many classes, respectively, as white and

Asian students and this racial gap exists throughout the school year.

[Table 2 here]

9This may be the case due to the exclusion criteria we mention above, where many special education
students and those who would otherwise perform poorly are excluded from the analytic sample.
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3 Identification Strategy

Our novel approach to isolating the causal effects of secondary school absences on academic

achievement builds on a basic value-added model of the education production function, in

which student absences are a contemporaneous input (Aucejo and Romano, 2016; Gershenson

et al., 2017). Specifically, we model student i’s standardized end-of-year test score in subject

j in year t as a function of possibly time-varying student characteristics (Xijt) and their

total class absences in the subject (aijt). Following the value-added literature, Xijt includes

lagged test scores that control for students’ sorting into classrooms and their prior academic

history (Chetty et al., 2014a). This model is specified as:

Yijt = βXijt + γaijt + µijt, (1)

where X includes lagged test scores, ELL and special education status, demographic back-

ground, and census-tract-by-year indicators to control for socio-economic status and neigh-

borhood effects and µ represents the unobserved determinants of student achievement.

However, unlike in the case of teacher effects or other school inputs that are assigned at

the start of the school year, OLS estimates of Equation (1) are likely biased due to the fact

that absences (aijt) are both an intermediate output and an input of the education production

function, which might be affected by the same idiosyncratic shocks that affect test scores.

Specifically, student-specific, time-varying shocks are a threat to the identification of the

causal effect of absences that neither lagged test scores nor student fixed effects adequately

control for. For example, an illness or family emergency specific to year t could jointly affect

student i’s absences and achievement. Existing research on the causal effects of student

absences acknowledges, but has yet to fully address, this concern.

We address this identification challenge by leveraging between-subject variation in stu-

dent absences and assuming that such variation is conditionally random. We do so using

two related but distinct approaches. The first uses total annual absences in math and ELA

8



to proxy for the year-specific unobserved shock and is described in Section 3.1. The second

stacks the data across subjects so there are two observations per student-year and estimates

a model that conditions on student-by-year FE; this approach is described in Section 3.2.

The two approaches are similar in that they rely on the same type of identifying variation,

make the same key identification assumption, and yield similar results. However, each ap-

proach also makes some additional, unique assumptions. The general identification strategy,

as well as the subtle differences between our two approaches, are motivated by specifying

the absence production function.

Specifically, we model aijt as a function of students’ time-invariant subject-specific pref-

erences (πij), subject-year effects (αjt), student-year shocks (θit), and an idiosyncratic error:

aijt = πij + αjt + λθit + eijt, (2)

where eijt ⊥ θit by definition. This model suggests that to causally identify the effects of

absences in an education production function like that specified in Equation (1), we need

to address biases potentially induced by πij, αjt, and θit. It is straightforward to account

for πij with either lagged test scores or student FE. We can also easily account for αjt by

conditioning on classroom FE (Gershenson et al., 2017).10

However, the student-year shock θit is more problematic, as the unit of analysis in Equa-

tion (1) is the student-year. Below, we present two distinct but related approaches to con-

trolling for θit that exploit the fact that student absences vary across subjects. The subtle

difference between the two approaches is in how λ maps the idiosyncratic shock into ab-

sences. The lack of subscripts on λ in Equation (2) indicates that this mapping is the same

in both subjects, though we later relax this assumption. Intuitively, a constant λ means,

for example, that a stressful family emergency in year t would not cause a larger increase

10Conditioning on classroom FE has additional benefits in the secondary school setting because they
account for otherwise unobserved differences between classrooms such as regular versus block schedules
(Rice et al., 2002), “tracking”-based differences in rigor (Jackson, 2014), and the physical location and time
that classes meet (Carrell et al., 2011; Heissel and Norris, 2018; Pope, 2016).
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in absences in math than in ELA, even if the student had a pre-existing preference for ELA

classes, as given by πij. Alternatively, if λ varies by subject, the student might respond to

the same family emergency by increasing absences differently in different subjects. Whether

we assume a constant or subject-specific λ leads to two distinct identification strategies.

Importantly, both approaches require that students have no time-varying, subject-specific

preferences that influence both absences and achievement. For example, this assumption

would fail if a student had better performance and fewer absences in class-j because her

friends were in the class or she felt a special bond with the teacher. These sorts of time-

varying, student-specific subject preferences would enter the idiosyncratic error eijt in Equa-

tion (2) and are distinct from the issue of how λ maps shocks into outcomes. The plausibility

and some checks of both assumptions are discussed below and in Section 5.11

3.1 Proxy Approach

If λ in Equation (2) is the same for all subjects and there is no year-specific preference for one

subject over the other, the difference between aijt and ai,−j,t is conditionally random.12 This

suggests using total annual absences across both subjects (Ait) as a proxy for θit. Adding

Equation (2) across subjects yields

Ait = aijt + ai,−j,t = (πij + πi,−j) + (αjt + α−j,t) + 2λθit + (eijt + ei,−j,t), (3)

where it is straightforward to solve Equation (3) for θit and recognize that Ait is a potential

proxy for the unobserved student-year shock in a typical education production function, as

11In a descriptive analysis of the same administrative data used here, Whitney and Liu (2017) compare the
predictors of partial- and full-day absences and find little, if any, evidence of time-varying, subject-specific
preferences in class skipping. Specifically, only about half of full-day absences are unexcused, while more
than 90% of part-day absences are unexcused. The main source of variation in part-day (subject-specific)
absences is the class meeting time and not subject, which is controlled for by classroom fixed effects. This
provides additional supporting evidence for the main identifying assumption in the current study: that
remaining between-subject variation in students’ annual absences is as good as random.

12This is similar to the identifying assumption in twins-based research designs (Ashenfelter and Krueger,
1994; Bound and Solon, 1999).
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the π and α terms would be controlled for by the lag scores and classroom FE, respectively,

which are common to such models. By inserting Equation (3) into Equation (1), formally,

we estimate

Yijt = βXijt + γaijt + δAit + uijt, (4)

where u is a composite error term that includes eijt and ei,−j,t.
13 We estimate Equation (4)

by OLS separately for math and ELA achievement, where A is the same in both models.14

This identification strategy effectively compares two students who have the same number of

total absences but one has an additional math absence (thus one fewer ELA absence) than

the other, holding other variables constant.15 A causal interpretation of these estimates

makes two assumptions on top of the “constant λ” assumption discussed above and the

usual value-added model assumptions regarding the effectiveness of controlling for lagged

test scores and classroom FE.

First, conditional on aijt, X, and θit, it must be that ai,−j,t, and therefore Ait, does

not directly affect Yijt and is thus available as a proxy. This is the textbook “redundancy

assumption” of proxy plug-in solutions to omitted variables bias (Wooldridge, 2010). This

rules out spillover effects of absences in one subject on achievement in the other; while this

is unlikely to hold exactly, we argue that such spillovers are likely negligible and provide

supporting empirical evidence of this in Section 5.

Second, the ratio of aijt to ai,−j,t must be conditionally random. Technically, this is

because the idiosyncratic errors of Equation (3) enter the composite error of Equation (4)

and is analogous to the textbook assumption of a valid proxy. Here, it intuitively means

that students do not have time-varying subject preferences that directly affect absences and

13The classroom FE in X subsume the year, school, and teacher FE, as well as observed classroom
characteristics such as class size and socio-demographic composition, that are typically included in value-
added models.

14In practice, estimated γ are the same if we control for the other subject’s absences ai,−j,t instead of Ait.
15Standard errors are clustered at the school level, which yields more conservative standard errors than

clustering at the classroom or student level.

11



achievement. Relative to students’ time-invariant preferences and classroom effects that

are common to all students, we argue that time-varying preferences of this sort are likely

negligible and provide supporting empirical evidence that this is so in Section 5.

3.2 Stacked Model

Alternatively, suppose that the λ in Equation (2) varies by subject (i.e., the underlying

preferences πij moderate the effect of θit, or there is an interaction effect between πij and

θit). For example, a student with an underlying math preference might respond to a stressful

family situation in year t by only (or disproportionately) increasing their ELA absences. In

this case, Ait is no longer a useful proxy because the aijt and ai,−j,t in Equation (3) are

weighted differently, and since these weights are unknown, we cannot distinguish them from

the parameter of interest γ.

Instead, we can directly control for potentially endogenous student-year shocks by stack-

ing the data across subjects so that there are two observations per student-year (math and

ELA) and estimating a model that conditions on student-by-year FE. Formally, we estimate

Yijt = γaijt + αj + φit + uijt, (5)

where α and φ are subject and student-year FE, respectively. 16 In contrast to the proxy

approach, Equation (5) is agnostic about the nature of λ in Equation (2), but requires that

the student-year shock affects achievement the same way in both subjects. As a practical mat-

ter, the student-year FE make any student-year or school-year controls redundant, though

the model can accommodate classroom FE to account for any unobservables (e.g., teacher

quality and peer composition) that are constant at the classroom level.

16To be true to Equation (2), the stacked model could replace αj with student-by-subject FE to explicitly
control for students’ time-invariant preferences for subjects (πij). However, doing so would require restricting
the analytic sample to students who took both math and ELA classes in the same year for at least two years,
which is a nontrivial restriction in the high school sample. We discuss results from both specifications in
Section (4.1).
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Importantly, a causal interpretation of the stacked model’s estimates requires the same

assumption of no time-varying, subject-specific preferences made by the proxy model. In-

tuitively, this is analogous to the assumption of no time-varying heterogeneity in standard

panel data models, and once again requires that the ratio of aijt to ai,−j,t in a given year

is conditionally random. The results presented in Section 4.1 show that estimates of γ in

Equations 4 and 5 turn out to be qualitatively similar, suggesting that the subtly differ-

ent identifying assumptions regarding λ are unimportant. A thorough assessment of the

plausibility of all the identifying assumptions is presented in Section 5.

4 Student Absences and Academic Achievement

4.1 Main Results

Table 3 reports estimates of the education production functions specified in Equations (4)

and (5). Columns (1) through (3) report versions of the “proxy” model (Equation 4) for

math achievement. Column (1) presents estimates from a relatively standard, fully-specified

value-added model that conditions on linear and quadratic lagged test scores in both math

and ELA, observed student characteristics, lagged GPA, and classroom and neighborhood-

by-year FE. However, this model fails to adjust for unobserved, student-year shocks. Thus,

the relatively large point estimate of -0.08, which suggests that ten math absences reduce

achievement by 8% of a test-score SD, is likely biased upwards by the presence of student-year

unobserved shocks that jointly determine absences and achievement.

Column (2) reports estimates from our preferred model, which proxies for unobserved

student-year shocks with Ait, a student’s total annual absences across both subjects. Doing so

cuts the point estimate on math in half, suggesting that the causal effect of ten math absences

is about 4% of a test-score SD. This significant decrease suggests that the estimate in Column

(1), and many existing estimates of the effect of student absences that rely on lagged test

13



scores or student-FE strategies, are biased upward by unaccounted-for idiosyncratic shocks.

Column (3) replaces the lagged test scores and time-invariant student characteristics with

student FE, which leaves the point estimate virtually unchanged, and reassures us that

selection into classrooms and pre-existing, time-invariant predispositions for being absent

are adequately controlled for.

Columns (4)-(6) estimate the same three model specifications for ELA. The results here

follow a similar pattern: in all three models there is a significant and negative relation

between ELA absences and ELA test scores, though conditioning on Ait reduces the point

estimate by about 33%. The preferred estimate in column 5 shows that ten ELA absences

reduce ELA scores by about 4% of a test-score SD, which is quite similar to the estimated

effect of math absences on math achievement. Interestingly, the naive estimates that do

not account for idiosyncratic shocks in Columns (1) and (4) show a larger effect of absences

on math than ELA scores, which is consistent with past research (Gershenson et al., 2017);

however, this difference vanishes upon controlling for idiosyncratic shocks, which once again

highlights the importance of accounting for time-varying, student-specific shocks that jointly

affect absences and achievement.

[Table 3 here]

Finally, Columns 7 and 8 of Table 3 estimate the stacked student-year FE model specified

in Equation (5). The estimates in Column 8 also condition on classroom FE, though this

proves inconsequential: both models indicate that ten absences reduce achievement by about

3% of a test-score SD. These estimates are slightly smaller, but similar in magnitude, to

the preferred subject-specific “proxy” estimates reported in Columns 2 and 5. The similar

estimates across the two models suggests that subtle differences in identifying assumptions

are empirically unimportant once the main threats to identification have been addressed.17

17Adding student-by-subject FE to the stacked model estimated in columns 7 and 8 attenuates the esti-
mated effects of absences by about 25%, though they remain strongly statistically significant. Re-estimating
the preferred model (Columns (2) and (4)) using the same restricted sample (students with both math and
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4.2 Heterogeneity

Table 4 augments the preferred “proxy” model specified in Equation (4) to include interaction

terms that allow the effects of absences to vary by certain student and school characteristics.

Panel A reports estimates for math and panel B does so for ELA. Column 1 interacts absences

with a high-school indicator, as the reasons for absences in middle school might be different

than in high school. Moreover, high school absences might involve more missed work that

needs to be made up, or that is more difficult to make up at home. In Panel A, the effect

of absences is slightly less harmful in high school, though this difference is not statistically

significant at traditional confidence levels. Panel B, however, shows that ELA absences are

only harmful in high school. Again, this may be because parents are more able to help

their children make up missed work in middle school, middle school ELA teachers are more

proactive about helping students catch up, or because there is less work to make up following

a middle school ELA absence.

Columns (2) and (3) test for demographic differences in the harm of absences. This is mo-

tivated by evidence of within-school differences by gender in how students respond to school

inputs (Autor et al., 2016) and by race in how students are viewed by teachers (Gershenson

et al., 2016). In the case of absences, however, we see no evidence of heterogeneous impacts.

Similarly, Column (4) of Table 4 tests for differential impacts by school poverty rate. This

is motivated by evidence that economically-disadvantaged elementary school students are

absent more often, and marginally more harmed by absences, than their more advantaged

peers (Gershenson et al., 2017). However, these interaction terms are imprecisely estimated,

and provide no clear evidence of socio-economic differences in the harm of absences.

ELA scores in multiple school years) attenuates those estimates by about 14%. The similar reductions in
magnitude suggest that this is due to the sample restriction and not a bias due to omitting πij from the
stacked model. Accordingly, we prefer using the unrestricted, more generalizable sample in our main analysis.
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4.3 Functional Form

The models estimated thus far assume that there are neither diminishing nor increasing costs

to student absences and that there is no discontinuity at the threshold of being considered

chronically absent, which in this district is defined as missing at least 10% of total school days

(accruing about 18 absences). We make this simplifying assumption in the baseline model

because Gershenson et al. (2017) and Kirksey (2019) found the marginal effects of student

absences to be approximately constant. Here, we include quadratic and non-parametric

functions of absences in the baseline “proxy” model (Equation 4) to test whether the same

is true in the middle and high school settings of interest in the current study.18

Figure 2 plots fitted regression lines from the linear (baseline), quadratic, and non-

parametric models. Panel A does so for math and panel B does so for ELA. The different

specifications mostly overlap with each other, suggesting that the marginal effect of absences

is approximately linear in both subjects, particularly in ELA. There are slightly increasing

costs at higher levels of math absences, though these departures from linearity are not statis-

tically significant. Nor is there any discrete change at the threshold of chronic absenteeism

(though chronically absent students perform significantly worse than students with just one

or two absences). However, the non-parametric estimates are fairly noisy for higher absence

counts, as there are relatively few students in those bins, and suggest slightly larger effects of

single-digit absences in math than the linear specification, which provides more conservative

estimates of the harmful effects of student absences.

[Figure 2 here]

18We interact the linear and quadratic absence counts with an indicator for having at least one absence
to better align with the non-parametric plot.
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5 Robustness and Model Validation

5.1 Course Grades

Course grades provide an alternative, contemporaneous measure of learning. It is useful to

document the impact of absences on another outcome that is not subject to the critiques of

standardized test scores (e.g., measurement error and “teaching to the test”). And although

grades are a more subjective measure of academic performance than test scores, they are

an important outcome in their own right as high school grades tend to be more predictive

than test scores of long-term student success (Easton et al., 2017).19 Moreover, they deter-

mine GPA, class rank, and honors, all of which contribute to students’ college plans and

admissions. To our knowledge there is little credible evidence on how absences affect course

grades, though Gottfried (2010) does use an instrumental variables strategy to show an effect

of absences on cumulative GPA in the School District of Philadelphia.

Columns (1) and (2) of Table 5 show estimates of the baseline “proxy” model (Equation

4) for math and ELA course grades, respectively. Course grades are standardized to have

mean of 0 and SD of 1, and again we scale the point estimates to reflect the impact of ten

absences. Subject-specific absences significantly reduce grades in both subjects by almost

20% of a SD. It is possible that some teachers explicitly factor in attendance in course grades

(in violation of district rules), but the effect is too big to be solely a reflection of a mechanical

relationship. This suggests that absences are a true impediment to learning with potential

long-lasting consequences, and not just missed preparation for end-of-year tests.

5.2 Falsification Test

Access to course grades and the exact timing of absences also facilitate a falsification test

of our main finding that absences reduce test scores. The idea is that since state mandated

19Grades in the district are explicitly based on academic performance and are not allowed to be based on
nonacademic factors such as absences.
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tests occur during the approximately four-week testing window that usually starts in week 15

or 16 of the spring semester, absences after the testing window cannot affect test scores but

can affect course grades.20 If post-test absences “affect” test scores, we would worry that our

identification strategy is not adequately controlling for selection into absences. Herrmann

and Rockoff (2012) and Gottfried and Kirksey (2017) conduct similar falsification tests in

their analyses of the effects of teacher and student absences, respectively, on student test

scores, though they do not benchmark these estimates against effects on course grades.

Columns (3) and (4) of Table 5 re-estimate the course-grade regressions, this time dis-

tinguishing between absences that occurred before, during, and after the testing window.

For both subjects, absences during and after the testing window (i.e., late in the year) have

substantially larger impacts on course grades than earlier absences, though absences in all

three time periods have statistically significant impacts. These larger effects likely result

from students having less time to make up missed work following absences that occur late

in the school year.

Similarly, Columns (5) and (6) of Table 5 conduct the same falsification test for the

baseline test-score regressions. These estimates follow a similar pattern as those for course

grades before and during the testing window: for both subjects, all absences have statistically

significant effects on test scores, though the effects of absences during the testing window

are about 5 to 6 times more harmful than absences earlier in the year. Intuitively, the larger

effects during the testing window likely reflect missed instructional and preparation time for

state tests. However, unlike in the course-grade regressions in Columns (3) and (4), there

is no significant effect of post-testing window absences on test scores, which lends further

credibility to a causal interpretation of the baseline estimates and is consistent with the

results of Gottfried and Kirksey (2017). The effects of absences by timing on both course

grades and state tests are plotted side by side in Figure 3, which makes clear the difference

20As discussed in Section 2, we can only impute testing windows, as the exact timing of testing is unknown
and may vary across students within a school. We define the start dates using the state education code. A
typical testing window starts in week 15 or 16 in the spring semester and lasts until week 19 or 20.
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between post-window effects on grades and test scores.

[Figure 3 here]

5.3 Probing the Identifying Assumptions

In this section we probe the identifying assumptions for the baseline “proxy” identification

strategy discussed in Section 3.1. The first assumption was that students’ preferences for

one subject over the other do not endogenously vary over time (and similarly that student-

year shocks affect absences in all subjects the same way). While this assumption cannot

be directly tested, we now conduct two auxiliary analyses to show that, at least to a first

approximation, this is a reasonable assumption that does not drive our main results.

First, this approach exploits within-student-year variation in subject-specific absences.

While students’ math and ELA absences in a given year are highly correlated (0.85 correlation

coefficient), two-thirds of student-year observations have different numbers of math and ELA

absences. Why these discrepancies exist is key to the validity of our identification strategies,

which assume that such differences are conditionally random (e.g., due to the timing of a

dentist appointment or leaving school early due to illness) and not the result of a year-specific

preference for one subject over the other that might also create corresponding differences

in academic performance.21 Specifically, the concern is that time-varying subject-specific

preferences are present in the idiosyncratic error terms in Equation (4), perhaps due to

subject-specific λ in Equation (2), which might bias the estimates. We provide suggestive

evidence that these differences are conditionally random by showing that absences in both

subjects respond almost identically to lagged test scores and lagged absences in subject j.

The left panel of Appendix Figure A1 plots both math and ELA absences as a function

of lagged math achievement, partialling out lagged ELA achievement. The two plots are

nearly identical, suggesting that math and ELA absences differ for reasons unrelated to math

21Time-invariant student preferences for a subject are accounted for by student FE and the results are
robust to doing so, as reported in Section 4.1.

19



ability or preferences (which are loosely captured by lagged math performance). If differences

between math and ELA absences were driven by subject-specific preferences or ability, we

would expect the ELA plot to be a relatively flat, horizontal line. The fact that both

math and ELA absences have nearly the same negative, approximately linear relationship

with lagged math scores suggests that absences are generally sticky within students and are

associated with negative shocks and poor academic performance in a general as opposed to

a subject-specific sense. As shown in the right panel of Appendix Figure A1, the same is

true for the relationship between current math and ELA absences and lagged ELA scores,

although the plots are much more flat compared with those using lagged math scores.

Appendix Figure A2 shows similar patterns in the relation of current absences to lagged

absences. Specifically, current math and ELA absences both respond in nearly identical

ways to lagged math absences, and similarly for lagged ELA absences. Together, the patterns

depicted in figures A1 through A2 suggest that between-subject absence differences in a given

year are not driven by students’ interest, ability, or past performance in a specific subject.

This is consistent with the similarity between the lag-score and student-FE specifications

reported in Table 3 and suggest that changes over time in subject-specific performance or

ability do not drive differences in subject-specific absences.

Second, we augment the baseline “proxy model” to directly control for student-year

specific factors that might create a student-year preference for one subject over the other.

Specifically, we augment the model to account for student-teacher match quality, which

is another potentially endogenous source of year-specific, subject-specific preferences that

would operate through classroom preferences. We add separate indicators for whether the

student and teacher are of the same sex or same race, given that demographically-matched

secondary school teachers increase achievement (Dee, 2007; Lim and Meer, 2017) and likely

influence attendance as well (Holt and Gershenson, 2019; Tran and Gershenson, 2021; Liu and

Loeb, 2021). Appendix Table A1 reports these estimates, where we see that the main results

are quite robust to the inclusion of the race- and gender-match indicators. This provides
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additional evidence that the baseline estimates are not biased by unobserved, year-specific,

subject-specific preferences and thus that they represent causal effects.

Finally, Appendix Table A2 shows that the baseline estimates are robust to using ab-

sences in other (non-ELA, non-math) classes to proxy for the unobserved student-year shock,

including physical education. This is an important result because it suggests that the proxy

strategy’s redundancy assumption holds, at least to a first approximation. The intuitive rea-

son is that this assumption rules out spillover effects of absences in subject j on achievement

in subject k. At first glance, this assumption seems questionable, as more ELA absences

could create more make-up work that takes away time from students’ math preparation,

or even directly hinder reading comprehension that is useful in math class. However, such

spillover effects would likely vary by class, and be vanishingly small in the case of physical

education classes. That the five sets of estimates using five different “off-subject” absences,

including physical education absences, are all in the neighborhood of the baseline estimate

of −0.04 suggests that spillover effects (i.e., failure of the redundancy assumption) are not a

practically important concern.22

In sum, the checks presented in this section provide suggestive evidence that the identify-

ing assumptions are generally plausible, and while they might not hold exactly, any resulting

bias is likely small enough to be practically unimportant. Together with the falsification test

results presented in Section 5.2, these findings support a causal interpretation of the baseline

estimates reported in Section 4.1.

6 Long-Run Effects

The results presented thus far provide compelling evidence that middle and high school

absences harm student learning, as measured by standardized end-of-year tests and course

grades. However, test scores and grades are primarily interesting to the extent that they

22The intuition behind this test is similar to an over-identification test that compares the 2SLS estimates
generated by different instruments (Hausman, 1978).
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proxy for longer-term outcomes of policy interest, such as high school completion and college

going. Short-run effects of schooling inputs on test scores do not always perfectly predict

long-run effects, and it is not obvious that all forms of educational attainment would be

equally affected by high school absences (e.g., high school graduation, two-year college en-

rollment, four-year college enrollment). The correlation between high school absences and

negative long-run outcomes, such as dropout, drug use, and criminal activity, is well docu-

mented (Rumberger and Rotermund, 2012; Hawkins et al., 1998; Henry and Huizinga, 2007;

Loeber and Farrington, 2000; Rocque et al., 2017). However, this research is largely correla-

tional. These concerns motivate a direct analysis of the causal relationship between student

absences and educational attainment.

Part of the reason that there is scant credible evidence on the long-run impacts of ab-

sences is the lack of an obvious research design: we cannot use the proxy strategy described

in section 3.1 because the proxy (total annual absences) is essentially the treatment of inter-

est in this case, nor can we rely on student FE because there is no within-student variation in

the outcomes of interest. Accordingly, we adopt a straightforward selection-on-observables

strategy in which we regress various measures of educational attainment on either ninth- or

tenth-grade total absences, school-by-year FE, neighborhood-by-year FE, and student co-

variates (including ELL status, demographic indicators, and lagged test scores and grades).

The five outcomes are high school graduation, immediate (after graduation) college enroll-

ment, any college enrollment, any enrollment in a four-year college, and any enrollment in a

two-year college. These estimates are reported in Table 6.

Panel A of Table 6 shows that ten absences in ninth grade reduce all five measures of

educational attainment by about one percentage point, or 2%, and that these effects are

statistically significant. Panel B shows similar effects of tenth grade absences, though a

subtle difference is that the effect on four-year enrollment is slightly larger than on two-year

enrollment, which is intuitive. These modest, but nontrivial, estimates suggest that while

much of the raw correlation between absences and long-run outcomes documented elsewhere
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is driven by selection into absences, there is likely a direct effect of absences as well.

[Table 6 here]

Still, while the school and neighborhood FE and student covariates arguably control for

a good amount of selection into absences, there is still some potential selection on unob-

servables. Accordingly, we also estimate bounds for the causal effects that are based on an

assumption about the amount of selection on unobservables into student absences relative

to that on observables (Altonji et al., 2005; Oster, 2019). Even when assuming a strong

degree of selection on unobservables (i.e., that there are equal amounts of selection on both

observed and unobserved student characteristics), we still find nonzero, statistically signif-

icant negative effects of absences on the long-run outcomes in question. Put differently,

there would have to be an implausibly large amount of selection on unobservables (i.e., at

least twice as much) as there is on observables to fully explain away the estimated impacts

of absences on long-run outcomes; these are the Delta values reported in Table 6. Given

that the observables include lagged achievement and school and neighborhood FE, coupled

with the modest changes in test score effects seen in Table 3 when the proxy was added to

the baseline model, this is extremely unlikely. Thus, the long-run estimates in Table 6 pro-

vide arguably compelling evidence that high school absences affect high school completion

and college enrollment rates. These effects are fairly constant across types of college enroll-

ment and reinforce a causal interpretation of the main finding that absences harm student

achievement and, ultimately, their educational attainment.

7 Conclusion

Using detailed administrative data that track student attendance in each class on each day,

this study provides the cleanest causal estimates to date of the immediate and longer-run

impacts of secondary school student absences. Our novel approach exploits two distinct yet
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closely related identification strategies that leverage between-subject variation in student

absences to account for unobserved student-year specific shocks. Both approaches yield

similar results. Specifically, missing ten class meetings in middle and high school reduces

end-of-year test scores by 3-4% of a SD in both math and ELA classes. We then use new

developments in the selection-on-observables literature to show that student absences in

the ninth and tenth grades affect educational attainment as well, at least among students

on the margin of obtaining credentials: ten absences reduce the probability of high school

graduation and college enrollment by 1.3 percentage points (or 2%). To our knowledge, this

is the first credible evidence of the long-run harms attributable to secondary school student

absences and reaffirms the importance of addressing student absenteeism.

Leveraging data on the timing of state standardized tests, we also provide an additional

check on the validity of the main results by showing that post-exam absences do not affect

exam scores. We then combine this information with data on course grades to probe possible

mechanisms driving the results. Because absences later in the year are more detrimental to

course grades and exam scores, and in the case of course grades even after the testing window

has closed, we can rule out a pure teaching-to-the-test explanation. Instead, it appears that

late-year absences are simply harder to make up, either because there is less time to do so

or because students are busier and encountering more difficult material later in the year.

Consistent with evidence from elementary schools, we find approximately linear effects of

student absences on test scores that are relatively constant across student socio-demographic

groups. This linearity suggests that chronic absenteeism indicators, which are widely used

in education policy-making, are arbitrary and that using chronic absenteeism rates as an

accountability metric misses a large portion of absences that cause substantial learning loss.

These effects are also economically consequential: extrapolating from the teacher-effect

estimates in Chetty et al. (2014b), eliminating ten math-class absences in a single grade could

increase a student’s lifetime earnings by about $12,000.23 Doing so across multiple subjects

23Chetty et al. (2014b) estimate that the SD of teacher effects in middle school is 0.098 for ELA and 0.134
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and multiple years of middle and high school could amount to earnings gains of more than

$100,000. Another way to assess the economic significance of these estimates is to use them

to infer the learning loss caused by school closures during the COVID-19 pandemic (Kuhfeld

et al., 2020).24 Specifically, the average student missed about 60 days of in-person schooling

in the spring of 2020.25 Given the abrupt nature of school closures and the confusion about

re-opening and online-learning plans, it is reasonable to assume that little to no learning took

place on about half, or 30, of those missed days. Extrapolating from our baseline estimates

and assuming linearity, this implies a learning loss of about 30× 0.004 = 0.12 test-score SD

in both math and ELA and a potential 2 to 3 percentage point (3 to 4%) decrease in the

likelihood of high-school graduation and college enrollment.26

Credible evidence that absences harm achievement also has implications for racial achieve-

ment gaps, which have shrank over the past 40 years but remain sizable (Reardon, 2011),

given that there are pronounced racial differences in absence rates (Whitney and Liu, 2017).

For example, in our analytic sample Black and Hispanic students score 1.12 and 0.94 SD

lower, respectively, on the state math test than their white and Asian peers. Meanwhile,

Table 2 shows the average white or Asian student misses seven math classes per year while

Black and Hispanic students miss 23 and 17, respectively. While we find no heterogeneity by

race in the impact of absences, these stark differences in absence rates likely contribute to

achievement gaps. For example, reducing Black and Hispanic student absences to the level

of their white and Asian peers would increase the average achievement of Black students

for math. They also estimate that students would gain approximately $39,000 on average in cumulative
lifetime income from a one SD improvement in teacher value-added in a single grade. We use teacher
value-added in math to provide a rough lower bound for the impact of absences on lifetime income.

24Similarly, taken at face value, our estimates suggest that cutting the summer vacation in half (i.e., adding
35 days to the school year) would boost achievement by about 0.14 SD. This is a large effect, given that
the average learning gains over the course of ninth grade are about 0.25 SD in math (Bloom et al., 2008).
However, this estimate should be interpreted as an upper bound for two general reasons. First, absences
are likely costly over and above the lost instructional time due to the coordination problem associated with
making up that missed time (Lazear, 2001). Second, the summer vacation counterfactual is not zero, as many
students enjoy a variety of experiences that develop their social and human capital (Gershenson, 2013).

25The majority of school districts in the U.S. shut down around March 15, 2020. A typical school year
ends in mid June, so students missed about three months of instruction or 60 instructional days.

26These estimates are roughly consistent with more rigorous projections and survey data on COVID’s
educational impacts (Kuhfeld et al., 2020; Aucejo et al., 2020; Azevedo et al., 2020).
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by about 16 × 0.004 = 0.064 test-score SD and that of Hispanic students by about 0.04

SD. Relative to the raw achievement gaps, absences might explain as much as 6 and 4%

of the Black and Hispanic achievement gaps, respectively. While not a silver bullet, these

are nontrivial reductions and every opportunity to reduce racial disparities in educational

outcomes is worthy of serious consideration.

An exciting development in the field of absence reduction is that numerous interventions

have recently been piloted, rigorously evaluated, and brought to scale. Many of these are

behaviorally informed and rely on nudges that provide information or reminders of the

importance of regular attendance. These interventions are relatively low cost and appear to

be very cost effective when compared to the likely lifetime earnings gains associated with

improved attendance. For example, one high-frequency text message intervention targeted to

parents increased class attendance by 12% at a modest cost of $63 per student (Bergman and

Chan, 2021). A similar intervention that aims to correct parents’ biased beliefs about their

children’s absence histories might reduce absences at a cost of $6 per absence at scale, across

all grade levels (Rogers and Feller, 2018). Other than behavioral interventions, structural

school policies can affect student attendance as well, such as bussing options (Gottfried, 2017)

and class size (Tran and Gershenson, 2021). Another way to do this is to formally recognize

that teachers affect student attendance and actively develop and reward this dimension

of teacher quality (Gershenson, 2016; Liu and Loeb, 2021). Relatedly, efforts to increase

diversity and racial representation in the teaching force can close racial disparities in absence

rates, as same-race teachers improve Black and Hispanic students’ attendance (Holt and

Gershenson, 2019; Tran and Gershenson, 2021). Future work should systematically evaluate

and compare the costs and benefits of these different approaches for absence reduction, as

well as the optimal targeting of these various approaches.
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Figures and Tables

Figure 1: Distribution of Absences by Subject
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Note: Observations are counts of yearly student absences in math or ELA classes between
2002-2003 to 2012-2013. Data are trimmed at 40 absences to show the bulk of variation.
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Figure 2: Linear, Quadratic, and Nonparametric Estimates of the Impact of Absences
on Achievement
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Note: The graph plots linear, quadratic, and nonparametric models separately. In the
nonparametric model, absences beyond 20 are binned as one group.
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Figure 3: The Effects of Absences Before, During, and After Test Window on Test
Scores and Course Grades
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Note: Test windows are defined by the California Education Code and constructed using
school days in the spring semester. State tests typically end in weeks 21-22. All models

control for total math and ELA absences pre-, during-, and post test window. All
coefficients are scaled by a factor of 10 to ease interpretation. Bars show confidence

intervals at the 95% level.
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Table 1: Sample Means

Mean SD

A. Student Characteristics

Female 0.48

White 0.09

Black 0.13

Hispanic 0.22

Asian 0.47

Other Race 0.09

Special Education 0.11

Gifted 0.25

ELL 0.25

Disabled 0.05

Chronically Absent 0.08

B. Short-Term Outcomes (Student-Year Level)

Math Course Grade 0.02 (0.96)

ELA Course Grade 0.00 (0.97)

Math Test Score 0.05 (0.99)

ELA Test Score 0.04 (0.98)

C. Long-Term Outcomes

Graduated High School 0.65

Enrolled in College Immediately after High School 0.50

Ever Enrolled in College 0.57

Ever Enrolled in 4 Year 0.41

Ever Enrolled in 2 Year 0.40

Student-Year Observations 210,380

Student-Year-Subject Observations 383,534

Number of Unique Students 72,161

Number of Courses 11,906

Number of Schools 43

Note: Data include 7th- to 11th-graders from school years 2002-2003 to
2012-2013. Panel B summarizes characteristics at the student-year level, and
Panels A and C summarize characteristics at the student level. Students are
flagged in a given category for Special Education, Gifted, ELL, Disabled, or
Chronically Absent if they are ever flagged for that category across any of
the years enrolled. Course grades are standardized at the school-year-subject-
course level and test scores are standardized at the school-year-subject level.
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Table 2: Absences by Subject and Time

All Students White/Asian Hispanic Black

Mean SD Mean SD Mean SD Mean SD

A. Math

Absences

Yearly Total 11.1 (16.7) 7.0 (12.8) 17.4 (19.5) 22.5 (22.1)

[8.4] [7.0] [10.5] [10.8]

Before Testing Window 8.0 (12.4) 5.0 (9.5) 12.6 (14.6) 16.1 (16.5)

During Test Window 1.8 (3.3) 1.1 (2.5) 2.9 (3.9) 3.8 (4.4)

After Test Window 1.5 (2.5) 1.0 (2.0) 2.2 (2.9) 3.0 (3.4)

Achievement

Test Score 0.04 (0.96) 0.36 (0.90) -0.53 (0.74) -0.68 (0.75)

End of Course Grade -0.00 (0.96) 0.15 (0.95) -0.22 (0.95) -0.39 (0.91)

Student-Year Observations 190,972 109,724 39,803 20,100

Unique Students 70,525 38,995 15,116 8,349

B. ELA

Absences

Yearly Total 11.1 (16.8) 6.7 (12.2) 17.4 (19.7) 23.0 (22.8)

[8.4] [6.5] [10.8] [11.9]

Before Testing Window 8.0 (12.5) 4.8 (9.1) 12.6 (14.7) 16.6 (17.0)

During Test Window 1.8 (3.3) 1.1 (2.4) 2.8 (3.9) 3.8 (4.4)

After Test Window 1.5 (2.5) 0.9 (1.9) 2.2 (2.9) 3.0 (3.5)

Achievement

Test Score 0.13 (0.95) 0.42 (0.84) -0.35 (0.87) -0.63 (0.88)

End of Course Grade 0.00 (0.97) 0.17 (0.92) -0.26 (0.99) -0.41 (0.95)

Student-Year Observations 192,562 110,194 37,538 22,540

Unique Students 67,432 36,810 13,975 8,724

Note: SD in brackets indicate within-student SD. Student-year observations and number of unique
students are specific to each subject (Math in Panel A, ELA in Panel B). Statistics of students in
Other Race category are omitted from display. Data include 7th- to 11th-graders from the school years
2002-2003 to 2012-2013. The testing window is an estimate of the test window based on the California
Education Code and does not necessarily reflect the exact test dates, which might include make-up
periods at the discretion of each school.
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Table 3: Main Results: The Impact of Absences on Test Scores

Subject Specific Model Stacked Model

Math ELA Math+ELA

(1) (2) (3) (4) (5) (6) (7) (8)

Subject Absences -0.082** -0.042** -0.041** -0.064** -0.040** -0.044** -0.026** -0.029**

(0.006) (0.010) (0.007) (0.005) (0.007) (0.005) (0.004) (0.004)

Math+ELA Absences -0.025** -0.021** -0.015** -0.012**

(0.006) (0.004) (0.004) (0.002)

Classroom FE X X X X X X X

Student Controls X X X X

Neighborhood-year FE X X X X

Student FE X X

Student-Year FE X X

R2 0.720 0.721 0.863 0.754 0.754 0.875 0.842 0.841

Observations 112,711 112,711 176,233 117,445 117,445 181,010 333,624 333,624

Notes: Each column indicates a separate model, with the outcome being math or ELA test scores.
Columns (1) to (3) present results from regressions estimating impact of Math absences on math
test scores, while Columns (4) to (6) present results from regressions estimating impact of ELA
absences on ELA test scores. Columns (7) and (8) present results that are from data that stack
math and ELA observations into a student-year-subject dataset. All coefficients are multiplied by
10 to ease interpretation. Student-level controls are included in Columns (1), (2), (4), and (5)
and they consist of both linear and quadratic lagged math and ELA test scores (standardized),
lagged total absence rate, lagged total suspension days, race, gender, ELL status, disability status,
and special education status. Student FE supplant student-level controls in Columns (3) and (6),
respectively. As we no longer need to use student test scores in the 6th grade as lagged achievement
for 7th graders, the sample sizes in Columns (3) and (6) are bigger than Columns (1), (2), (4), and
(5). Classroom- and school-level controls consist of the same set of control variables as the student
level. Standard errors are clustered at the school level for columns (1) to (6) and at the student
level for columns (7) and (8); they are shown in parentheses. + p<0.10 * p<0.05 ** p<0.01.
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Table 4: Heterogeneity by Student- and School-Level Characteristics

(1) (2) (3) (4)

A. Math
Subject Absences -0.057** -0.042** -0.040* -0.046**

(0.012) (0.012) (0.018) (0.017)
Subject Absences ×...

High School 0.018
(0.015)

Female 0.001
(0.010)

Black -0.003
(0.025)

Hispanic 0.020
(0.017)

Other -0.030
(0.027)

Second Tertile, School Poverty 0.023
(0.025)

Top Tertile, School Poverty -0.021
(0.022)

Observations 112,711 112,711 112,711 112,711
B. ELA
Yearly Subject Absences 0.001 -0.037** -0.043** -0.036**

(0.015) (0.009) (0.011) (0.011)
Yearly Subject Absences ×...

High School -0.048**
(0.017)

Female -0.004
(0.011)

Black 0.019
(0.015)

Hispanic -0.001
(0.016)

Other -0.006
(0.020)

Second Tertile, School Poverty -0.018
(0.015)

Top Tertile, School Poverty 0.022
(0.014)

Observations 117,445 117,445 117,445 117,445

Note: Each column and panel indicate a separate model. All coefficients are multiplied
by 10 to ease interpretation. Each model interacts absences with a student- or school-
level characteristic. All models control for classroom and neighborhood-by-year FE,
student-level controls used in Table 3, and total absences in both math and ELA. The
reference group is middle school students for column (1), males for column (2), white
students for column (3), and schools that are in the first tertile in student poverty rate
for columns (3) and (4). Standard errors are clustered at the school level and shown
in parentheses. + p<0.10 * p<0.05 ** p<0.01.
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Table 5: Impact of Test Window Absences on Achievement

Course Grades Test Scores

Math ELA Math ELA Math ELA

(1) (2) (3) (4) (5) (6)

Before Test Window

Subject Absences -0.169** -0.180** -0.086** -0.110** -0.017* -0.017**

(0.011) (0.010) (0.011) (0.010) (0.007) (0.006)

ELA+Math Absences -0.052** -0.062** -0.032** -0.023** -0.015** -0.005+

(0.007) (0.008) (0.008) (0.006) (0.004) (0.003)

During Test Window

Subject Absences -0.416** -0.316** -0.113** -0.083**

(0.056) (0.035) (0.020) (0.026)

ELA+Math Absences -0.059* -0.166** -0.059** -0.072**

(0.026) (0.021) (0.013) (0.010)

After Test Window

Subject Absences -0.475** -0.608** 0.031 -0.108

(0.087) (0.096) (0.076) (0.067)

ELA+Math Absences -0.197** -0.197** -0.112** -0.019

(0.047) (0.051) (0.037) (0.035)

Observations 112,325 117,527 112,325 117,527 105,773 106,825

R2 0.337 0.373 0.352 0.392 0.728 0.752

Note: Outcomes are standardized end-of-course grades (math for Columns (1) and (3), and ELA
for Columns (2) and (4)) and standardized test scores (Columns (5) and (6)). Each column
reports coefficients from a separate regression. All coefficients are multiplied by 10 to ease
interpretation. Test windows are defined by the California Education Code and constructed
using school days in the spring semester. State tests typically end in weeks 21-22. The absence
variables used in this table are counts of absences that occur before, during, and after this test
window. All models control for classroom and neighborhood-by-year FE, student characteristics,
and total absences in both math and ELA. Standard errors are clustered at the school level and
shown in parentheses. + p<0.10 * p<0.05 ** p<0.01.
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Table 6: Impact of Absences on Long-Term Outcomes

High School

Graduation

Immediate

College

Enrollment

Ever

Enrolled

in College

Ever

Enrolled

in 4-Year

Ever

Enrolled

in 2-Year

(1) (2) (3) (4) (5)

A. 9th Grade

Total Absences -0.014** -0.012** -0.013** -0.009** -0.009**

(0.001) (0.001) (0.001) (0.001) (0.001)

Oster Bound -0.011 -0.008 -0.009 -0.005 -0.008

Delta 5.392 3.210 3.977 2.236 12.991

Outcome Averages 0.703 0.557 0.619 0.448 0.419

Observations 25,189 25,038 25,038 25,038 25,038

B. 10th Grade

Total Absences -0.013** -0.013** -0.013** -0.011** -0.008**

(0.001) (0.001) (0.001) (0.001) (0.001)

Oster Bound -0.011 -0.008 -0.010 -0.005 -0.008

Delta for β = 0 5.064 2.603 3.766 1.892 69.570

Outcome Averages 0.808 0.634 0.710 0.508 0.488

Observations 31,163 30,941 30,941 30,941 30,941

Note: Each column under each panel shows estimates from a separate regression estimating long-
term impact of absences. Each model predicts a long-term outcome of interest using total number
of student absences across all subjects (i.e., math, ELA, science, social studies, foreign languages,
PE, and other courses) accrued in a given year (Grade 9 in Panel A, Grade 10 in Panel B). All
models control for student-level covariates and classroom and neighborhood-year FE. Coefficients,
standard errors, and Oster bounds are scaled by a factor of 10 to ease interpretation. Oster bounds
are computed based on the assumption that the maximum R2 is 1.3 times as big as the R2 from
the full model. Sample sizes vary between the first column and Columns (2) through (5), as
postsecondary data linkages are conditional on high school graduation and exclude a small number
of students who do not graduate from high school. Standard errors are clustered at the school level
and shown in parentheses. + p<0.10 * p<0.05 ** p<0.01.
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Appendix

Figure A1: Binned Scatter Plot of Absences vs. Lagged Test Scores

2
4

6
8

10
12

To
ta

l Y
ea

rly
 A

bs
en

ce
s

-1 0 1 2
Lagged Math Scores

Math ELA

2
4

6
8

10
12

To
ta

l Y
ea

rly
 A

bs
en

ce
s

-1 0 1 2
Lagged ELA Scores

Math ELA

Note: Data are from the school years 2002-2003 to 2012-2013. Observations are counts of
student absences in math and ELA classes in a school year corresponding to binned prior

year math or ELA test scores, after partialling out the other subject’s test scores.
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Figure A2: Binned Scatter Plot of Absences vs. Lagged Absences
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Note: Data are from the school years 2002-2003 to 2012-2013. Observations are counts of
student absences in math and ELA classes in a school year corresponding to binned prior

year math or ELA absences, after partialling out the other subject’s annual absences.
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Table A1: Replication of Main Results Controlling for Race/Gender Match

Subject Specific Model Stacked Model

Math ELA Math+ELA

(1) (2) (3)

Subject Absences -0.042** -0.040** -0.028**

(0.009) (0.007) (0.004)

ELA+Math Absences -0.025** -0.015**

(0.005) (0.004)

Race Match 0.163** -0.019 0.534**

(0.060) (0.080) (0.039)

Gender Match 0.139** 0.025 0.298**

(0.045) (0.032) (0.027)

Classroom FE X X X

Lagged Math & ELA Scores X X

Student Controls X X

Neighborhood-year FE X X

Student-Year FE X

R2 0.754 0.721 0.841

Observations 117,450 112,707 333,624

Notes: Each column shows regression outputs from separate models. Results
shown are replications of Table 3 controlling for teacher-student race/gender
match effects, where race/gender match equals one if the teacher and student
are in the same race category (White, Hispanic, Black, and Asian) or gen-
der (Male, Female). Columns (1) and (2) show coefficients on subject-specific
absences (Math and ELA, respectively) while Column (3) shows results using
data that stack Math and ELA observations. All coefficients are multiplied
by 10 to ease interpretation. Student-level controls include both linear and
quadratic lagged math and ELA test scores, lagged total absence rate, lagged
total suspension days, race, gender, ELL status, disability status, and Special
Education status. Classroom- and school-level controls use the same set of
control variables as the student level. All models cluster standard errors at the
school level. Standard errors are clustered at the school level and shown in
parentheses. + p<0.10 * p<0.05 ** p<0.01.
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Table A2: Robustness Check Using Off-Subject Absences

Science
Social

Studies

Foreign

Langs
PE Other

(1) (2) (3) (4) (5)

A. Math

Math Absences -0.013+ -0.035** -0.054** -0.057** -0.042**

(0.008) (0.009) (0.008) (0.007) (0.006)

Math + X Absences -0.037** -0.028** -0.017** -0.020** -0.025**

(0.004) (0.004) (0.003) (0.004) (0.003)

R2 0.721 0.721 0.721 0.721 0.721

Observations 112,711 112,711 112,711 112,711 112,711

B. ELA

ELA Absences -0.000 -0.025** -0.034** -0.047** -0.027**

(0.007) (0.007) (0.006) (0.005) (0.006)

ELA + X Absences -0.034** -0.023** -0.018** -0.013** -0.023**

(0.005) (0.003) (0.003) (0.003) (0.003)

R2 0.755 0.755 0.754 0.754 0.755

Observations 117,453 117,453 117,453 117,453 117,453

Note: Each column and panel show coefficients from a separate regression.
The table replicates the results from Table 3 by using one alternative
subject at a time, listed in Columns 1 through 5. Panel A shows the
impact of absences from math and the total absences from an alternative
subject and math on math test scores, while Panel B shows the impact of
absences from ELA and the total absences from an alternative subject and
ELA on ELA test scores. Standard errors are clustered at the school level
and shown in parentheses. + p<0.10 * p<0.05 ** p<0.01.
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