Search EdWorkingPapers

Search for EdWorkingPapers here by author, title, or keywords.

Kathryn Gonzalez

Kathryn Gonzalez, Kathleen Lynch, Heather C. Hill.

Despite growing evidence that classroom interventions in science, technology, engineering, and mathematics (STEM) can increase student achievement, there is little evidence regarding how these interventions affect teachers themselves and whether these changes predict student learning. We present results from a meta-analysis of 37 experimental studies of preK-12 STEM professional learning and curricular interventions, seeking to understand how STEM classroom interventions affect teacher knowledge and classroom instruction, and how these impacts relate to intervention impacts on student achievement. Compared with control group teachers, teachers who participated in STEM classroom interventions experienced improvements in content and pedagogical content knowledge and classroom instruction, with a pooled average impact estimate of +0.56 standard deviations. Programs with larger impacts on teacher practice yielded larger effects on student achievement, on average. Findings highlight the positive effects of STEM instructional interventions on teachers, and shed light on potential teacher-level mechanisms via which these programs influence student learning.

More →

Kathleen Lynch, Heather C. Hill, Kathryn Gonzalez, Cynthia Pollard.

More than half of U.S. children fail to meet proficiency standards in mathematics and science in fourth grade. Teacher professional development and curriculum improvement are two of the primary levers that school leaders and policymakers use to improve children’s science, technology, engineering and mathematics (STEM) learning, yet until recently, the evidence base for understanding their effectiveness was relatively thin. In recent years, a wealth of rigorous new studies using experimental designs have investigated whether and how STEM instructional improvement programs work. This article highlights contemporary research on how to improve classroom instruction and subsequent student learning in STEM. Instructional improvement programs that feature curriculum integration, teacher collaboration, content knowledge, pedagogical content knowledge, and how students learn all link to stronger student achievement outcomes. We discuss implications for policy and practice.

More →

Heather C. Hill, Kathleen Lynch, Kathryn Gonzalez, Cynthia Pollard.

How should teachers spend their STEM-focused professional learning time? To answer this question, we analyzed a recent wave of rigorous new studies of STEM instructional improvement programs. We found that programs work best when focused on building knowledge teachers can use during instruction: knowledge of the curriculum materials they will use, knowledge of content and how content can be represented for learners, and knowledge of how students learn that content. We argue that such learning opportunities improve teachers’ professional knowledge and skill, potentially by supporting teachers in making more informed in-the-moment instructional decisions.

More →

Kathleen Lynch, Heather C. Hill, Kathryn Gonzalez, Cynthia Pollard.

We present results from a meta-analysis of 95 experimental and quasi-experimental preK-12 science, technology, engineering, and mathematics (STEM) professional development and curriculum programs, seeking to understand what content, activities and formats relate to stronger student outcomes. Across rigorously conducted studies, we found an average weighted impact estimate of +0.21 standard deviations. Programs saw stronger outcomes when they helped teachers learn to use curriculum materials; focused on improving teachers' content knowledge, pedagogical content knowledge and/or understanding of how students learn; incorporated summer workshops; and included teacher meetings to troubleshoot and discuss classroom implementation. We discuss implications for policy and practice.

More →