Search EdWorkingPapers

Search for EdWorkingPapers here by author, title, or keywords.

Dorottya Demszky

Dorottya Demszky, Jing Liu, Heather C. Hill, Dan Jurafsky, Chris Piech.

Providing consistent, individualized feedback to teachers is essential for improving instruction but can be prohibitively resource intensive in most educational contexts. We develop an automated tool based on natural language processing to give teachers feedback on their uptake of student contributions, a high-leverage teaching practice that supports dialogic instruction and makes students feel heard. We conduct a randomized controlled trial as part of an online computer science course, Code in Place (n=1,136 instructors), to evaluate the effectiveness of the feedback tool. We find that the tool improves instructors’ uptake of student contributions by 24% and present suggestive evidence that our tool also improves students’ satisfaction with the course. These results demonstrate the promise of our tool to complement existing efforts in teachers’ professional development.

More →

Dorottya Demszky, Jing Liu, Zid Mancenido, Julie Cohen, Heather C. Hill, Dan Jurafsky, Tatsunori Hashimoto.

In conversation, uptake happens when a speaker builds on the contribution of their interlocutor by, for example, acknowledging, repeating or reformulating what they have said. In education, teachers' uptake of student contributions has been linked to higher student achievement. Yet measuring and improving teachers' uptake at scale is challenging, as existing methods require expensive annotation by experts. We propose a framework for computationally measuring uptake, by (1) releasing a dataset of student-teacher exchanges extracted from US math classroom transcripts annotated for uptake by experts; (2) formalizing uptake as pointwise Jensen-Shannon Divergence (pJSD), estimated via next utterance classification; (3) conducting a linguistically-motivated comparison of different unsupervised measures and (4) correlating these measures with educational outcomes. We find that although repetition captures a significant part of uptake, pJSD outperforms repetition-based baselines, as it is capable of identifying a wider range of uptake phenomena like question answering and reformulation. We apply our uptake measure to three different educational datasets with outcome indicators. Unlike baseline measures, pJSD correlates significantly with instruction quality in all three, providing evidence for its generalizability and for its potential to serve as an automated professional development tool for teachers.

More →